首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatially-separated populations often exhibit positively correlated fluctuations in abundance and other population variables, a phenomenon known as spatial synchrony. Generation and maintenance of synchrony requires forces that rapidly restore synchrony in the face of desynchronizing forces such as demographic and environmental stochasticity. One such force is dispersal, which couples local populations together, thereby synchronizing them. Theory predicts that average spatial synchrony can be a nonlinear function of dispersal rate, but the form of the dispersal rate-synchrony relationship has never been quantified for any system. Theory also predicts that in the presence of demographic and environmental stochasticity, realized levels of synchrony can exhibit high variability around the average, so that ecologically-identical metapopulations might exhibit very different levels of synchrony. We quantified the dispersal rate-synchrony relationship using a model system of protist predator-prey cycles in pairs of laboratory microcosms linked by different rates of dispersal. Paired predator-prey cycles initially were anti-synchronous, and were subject to demographic stochasticity and spatially-uncorrelated temperature fluctuations, challenging the ability of dispersal to rapidly synchronize them. Mean synchrony of prey cycles was a nonlinear, saturating function of dispersal rate. Even extremely low rates of dispersal (<0.4% per prey generation) were capable of rapidly bringing initially anti-synchronous cycles into synchrony. Consistent with theory, ecologically-identical replicates exhibited very different levels of prey synchrony, especially at low to intermediate dispersal rates. Our results suggest that even the very low rates of dispersal observed in many natural systems are sufficient to generate and maintain synchrony of cyclic population dynamics, at least when environments are not too spatially heterogeneous.  相似文献   

2.
A general prediction from simple metapopulation models is that spatially synchronized forcing can spatially synchronize population dynamics and destabilize metapopulations. In contrast, spatially asynchronous forcing is predicted to decrease population synchrony and promote temporal stability and population persistence, especially in the presence of dispersal. Only recently have studies begun to experimentally address these predictions. Moreover, few studies have experimentally examined how such processes operate in the context of competition communities. Stabilizing processes may continue to operate when placed within a metacommunity context with multiple competing consumers but only at low to intermediate levels of dispersal. High dispersal rates can reverse these predictions and lead to destabilization. We tested this under controlled conditions using an experimental aquatic system composed of three competing species of zooplankton. Metacommunities experienced different levels of dispersal and environmental forcing in the form of spatially synchronous or asynchronous pH perturbations. We found support that dispersal can have contrasting effects on population stability depending on the degree to which population dynamics were synchronized in space. Dispersal under synchronous forcing or no forcing had either neutral of positive effects on spatial population synchrony of all three zooplankton species. In these treatments, dispersal reduced population stability at the local and metapopulation levels for two of three species. In contrast, asynchronously varying environments reduced population synchrony relative to unforced systems, regardless of dispersal level. In these treatments, dispersal enhanced temporal stability and persistence of populations not by reducing population synchrony but by enhancing population minima and spatial averaging of abundances. High dispersal rates under asynchronous forcing reduced the abundance of one species, consistent with increasing regional competition and general metacommunity theory. However, no effects on its stability or persistence were observed. Our work highlights the context‐dependent effects of dispersal on population dynamics in varying environments.  相似文献   

3.
One of the most salient spatiotemporal patterns in population ecology is the synchronization of fluctuating local populations across vast spatial extent. Synchronization of abundance has been widely observed across a range of spatial scales in relation to the rate of dispersal among discrete populations. However, the dependence of synchrony on patterns of among-patch movement across heterogeneous landscapes has been largely ignored. Here, we consider the duration of movement between two predator–prey communities connected by weak dispersal and its effect on population synchrony. More specifically, we introduce time-delayed dispersal to incorporate the finite transmission time between discrete populations across a continuous landscape. Reducing the system to a phase model using weakly connected network theory, it is found that the time delay is an important factor determining the nature and stability of phase-locked states. Our analysis predicts enhanced convergence to stable synchronous fluctuations in general and a decreased ability of systems to produce in-phase synchronization dynamics in the presence of delayed dispersal. These results introduce delayed dispersal as a tool for understanding the importance of dispersal time across a landscape matrix in affecting metacommunity dynamics. They further highlight the importance of landscape and dispersal patterns for predicting the onset of synchrony between weakly coupled populations.  相似文献   

4.
Prior ecological research has shown that spatial processes can enhance the temporal stability of populations in fluctuating environments. Less explored is the effect of dispersal on rapid adaptation and its concomitant impact on population dynamics. For asexually reproducing populations, theory predicts that dispersal in fluctuating environments can facilitate asynchrony among clones and enhance stability by reducing temporal variability of total population abundance. This effect is predicted when clones exhibit heritable variation in environmental optima and when fluctuations occur asynchronously among patches. We tested this in the field using artificial ponds and metapopulations composed of a diverse assemblage of Daphnia pulex clones. We directly manipulated dispersal presence/absence and environmental fluctuations in the form of nutrient pulses. Consistent with predictions, dispersal enhanced temporal asynchrony among clones in the presence of nutrient pulses; this in turn stabilized population dynamics. This effect only emerged when patches experienced spatially asynchronous nutrient pulses (dispersal had no effect when patches were synchronously pulsed). Clonal asynchrony was driven by strong positive selection for a single clone that exhibited a performance advantage under conditions of low resource availability. Our work highlights the importance of dispersal as a driver of eco-evolutionary dynamics and population stability in variable environments.  相似文献   

5.
Spatially synchronous population dynamics have been documented in many taxa. The prevailing view is that the most plausible candidates to explain this pattern are extrinsic disturbances (the Moran effect) and dispersal. In most cases disentangling these factors is difficult. Theoretical studies have shown that dispersal between subpopulations is more likely to produce a negative relationship between population synchrony and distance between the patches than perturbations. As analyses of empirical data frequently show this negative relationship between the level of synchrony and distance between populations, this has emphasized the importance of dispersal as a synchronizing agent. However, several weather patterns show spatial autocorrelation, which could potentially produce patterns in population synchrony similar to those caused by dispersal. By using spatially extended versions of several population dynamic models, we show that this is indeed the case. Our results show that, especially when both factors (spatially autocorrelated perturbations and distance-dependent dispersal) act together, there may exist groups of local populations in synchrony together but fluctuating asynchronously with some other groups of local populations. We also show, by analysing 56 long-term population data sets, that patterns of population synchrony similar to those found in our simulations are found in natural populations as well. This finding highlights the subtlety in the interactions of dispersal and noise in organizing spatial patterns in population fluctuations.  相似文献   

6.
Abbott KC 《Ecology letters》2011,14(11):1158-1169
Understanding how dispersal influences the dynamics of spatially distributed populations is a major priority of both basic and applied ecologists. Two well-known effects of dispersal are spatial synchrony (positively correlated population dynamics at different points in space) and dispersal-induced stability (the phenomenon whereby populations have simpler or less extinction-prone dynamics when they are linked by dispersal than when they are isolated). Although both these effects of dispersal should occur simultaneously, they have primarily been studied separately. Herein, I summarise evidence from the literature that these effects are expected to interact, and I use a series of models to characterise that interaction. In particular, I explore the observation that although dispersal can promote both synchrony and stability singly, it is widely held that synchrony paradoxically prevents dispersal-induced stability. I show here that in many realistic scenarios, dispersal is expected to promote both synchrony and stability at once despite this apparent destabilising influence of synchrony. This work demonstrates that studying the spatial and temporal impacts of dispersal together will be vital for the conservation and management of the many communities for which human activities are altering natural dispersal rates.  相似文献   

7.
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the stability of equilibrium states in the local patches in the absence of migration determines the stability of spatially homogeneous equilibrium states of the whole metapopulation when migration is added. Here, we present classes of examples in which deviations from the usual assumptions lead to different predictions. In particular, heterogeneity in local habitat quality in combination with long-range dispersal can induce a stable equilibrium for the metapopulation dynamics, even when within-patch processes would produce very complex behaviour in each patch in the absence of migration. Thus, when spatially homogeneous equilibria become unstable, the system can often shift to a different, spatially inhomogeneous steady state. This new global equilibrium is characterized by a standing spatial wave of population abundances. Such standing spatial waves can also be observed in metapopulations consisting of identical habitat patches, i.e. without heterogeneity in patch quality, provided that dispersal is density dependent. Spatial pattern formation after destabilization of spatially homogeneous equilibrium states is well known in reaction–diffusion systems and has been observed in various ecological models. However, these models typically require the presence of at least two species, e.g. a predator and a prey. Our results imply that stabilization through spatial pattern formation can also occur in single-species models. However, the opposite effect of destabilization can also occur: if dispersal is short range, and if there is heterogeneity in patch quality, then the metapopulation dynamics can be chaotic despite the patches having stable equilibrium dynamics when isolated. We conclude that more general metapopulation models than those commonly studied are necessary to fully understand how spatial structure can affect spatial and temporal variation in population abundance.  相似文献   

8.
Canonical functions for dispersal-induced synchrony   总被引:4,自引:0,他引:4  
Two processes are universally recognized for inducing spatial synchrony in abundance: dispersal and correlated environmental stochasticity. In the present study we seek the expected relationship between synchrony and distance in populations that are synchronized by density-independent dispersal. In the absence of dispersal, synchrony among populations with simple dynamics has been shown to echo the correlation in the environment. We ask what functional form we may expect between synchrony and distance when dispersal is the synchronizing agent. We formulate a continuous-space, continuous-time model that explicitly represents the time evolution of the spatial covariance as a function of spatial distance. Solving this model gives us two simple canonical functions for dispersal-induced covariance in spatially extended populations. If dispersal is rare relative to birth and death, then covariances between nearby points will follow the dispersal distance distribution. At long distances, however, the covariance tails off according to exponential or Bessel functions (depending on whether the population moves in one or two dimensions). If dispersal is common, then the covariances will follow the mixture distribution that is approximately Gaussian around the origin and with an exponential or Bessel tail. The latter mixture results regardless of the original dispersal distance distribution. There are hence two canonical functions for dispersal-induced synchrony  相似文献   

9.
Network topography ranges from regular graphs (linkage between nearest neighbours only) via small-world graphs (some random connections between nodes) to completely random graphs. Small-world linkage is seen as a revolutionary architecture for a wide range of social, physical and biological networks, and has been shown to increase synchrony between oscillating subunits. We study small-world topographies in a novel context: dispersal linkage between spatially structured populations across a range of population models. Regular dispersal between population patches interacting with density-dependent renewal provides one ecological explanation for the large-scale synchrony seen in the temporal fluctuations of many species, for example, lynx populations in North America, voles in Fennoscandia and grouse in the UK. Introducing a small-world dispersal kernel leads to a clear reduction in synchrony with both increasing dispersal rate and small-world dispersal probability across a variety of biological scenarios. Synchrony is also reduced when populations are affected by globally correlated noise. We discuss ecological implications of small-world dispersal in the frame of spatial synchrony in population fluctuations.  相似文献   

10.
1.  Time series data on five species of gamebird from the Dolomitic Alps were used to examine the relative importance of dispersal and common stochastic events in causing synchrony between spatially structured populations.
2.  Cross-correlation analysis of detrended time series was used to describe the spatial pattern of fluctuations in abundance, while standardized time series were used to describe both fluctuations and the trend in abundance. There were large variations in synchrony both within and between species and only weak negative relationships with distance.
3.  Species in neighbouring habitats were more likely to be in synchrony than species separated by several habitats. Species with similar density-dependent structure were more likely to be in synchrony.
4.  In order to estimate the relative importance of dispersal and environmental stochasticity, we modelled the spatial dynamics of each species using two different approaches. First, we used estimating functions and bootstrapping of time series data to calculate the relative importance of dispersal and stochastic effects for each species. Second, we estimated the intensity of environmental stochasticity from climatic records during the breeding season and then modelled the dispersal rate and dispersal distance for each species. The two models exhibited similar results for rock ptarmigan, black grouse, hazel grouse and rock partridge, while contrasting patterns were observed for capercaillie.
5.  The results suggest that environmental stochasticity plays the dominant role in synchronizing the fluctuations of these galliform species, although there will also be some dispersal between populations.  相似文献   

11.
1. Spatial synchrony, the tendency for temporal population fluctuations to be correlated across multiple locations at regional scales, is common and contributes to the severity of outbreaks and epidemics, but is little studied in agricultural pests. 2. This study analysed spatial synchrony from 1974 to 2008 in 16 lepidopteran agricultural pests in Maryland, U.S.A., and investigated whether pest synchrony is driven by interannual variability in seasonal weather and the areas planted in different crop types. 3. Lepidopteran pests exhibited high degrees of spatial synchrony, which was driven by environmental variation, a phenomenon known as the Moran effect. Region-wide variation in the areas planted in major crops drove spatially synchronous abundance fluctuations in more than half of studied species. The combination of weather and crop composition explained large fractions of synchrony in black cutworm, corn earworm, European corn borer, and spotted cutworm populations. Other pests, including forage looper and variegated cutworm, displayed a high degree of spatial synchrony, but without dependence on the tested drivers. 4. The study finding that synchronous variation in the area planted in different crop types contributed to synchronous pest abundance fluctuations suggests that strategies to reduce synchrony in changes in crop type across a region could reduce the severity of pest outbreaks and enhance the stability of agricultural systems.  相似文献   

12.
While spatial synchrony of oscillating populations has been observed in many ecological systems, the causes of this phenomenon are still not well understood. The most common explanations have been the Moran effect (synchronous external stochastic influences) and the effect of dispersal among populations. Since ecological systems are typically subject to large spatially varying perturbations which destroy synchrony, a plausible mechanism explaining synchrony must produce rapid convergence to synchrony. We analyze the dynamics through time of the synchronizing effects of dispersal and, consequently, determine whether dispersal can be the mechanism which produces synchrony. Specifically, using methods new to ecology, we analyze a two patch predator-prey model, with identical weak dispersal between the patches. We find that a difference in time scales (i.e. one population has dynamics occurring much faster than the other) between the predator and prey species is the most important requirement for fast convergence to synchrony.  相似文献   

13.
We forecasted spatially structured population models with complex dynamics, focusing on the effect of dispersal and spatial scale on the predictive capability of nonlinear forecasting (NLF). Dispersal influences NLF ability by its influence on population dynamics. For simple 2-cell models, when dispersal is small, our ability to predict abundance in subpopulations decreased and then increased with increasing dispersal. Spatial heterogeneity, dispersal manner, and environmental noise did not qualitatively change this result. But results are not clear for complex spatial configurations because of complicated dispersal interactions across subpopulations. Populations undergoing periodic fluctuations could be forecasted perfectly for all deterministic cases that we studied, but less reliably when environmental noise was incorporated. More importantly, for all models that we have examined, NLF was much worse at larger spatial scales as a consequence of the asynchronous dynamics of subpopulations when the dispersal rate was below some critical value. The only difference among models was the critical value of dispersal rate, which varied with growth rate, carrying capacity, mode of dispersal, and spatial configuration. These results were robust even when environmental noise was incorporated. Intermittency, common in the dynamics of spatially structured populations, lowered the predictive capability of NLF. Forecasting population behaviour is of obvious value in resource exploitation and conservation. We suggest that forecasting at local scales holds promise, whereas forecasting abundance at regional scales may yield poor results. Improved understanding of dispersal can enhance the management and conservation of natural resources, and may help us to understand resource-exploitation strategies employed by local indigenous humans.  相似文献   

14.
The world is spatially autocorrelated. Both abiotic and biotic properties are more similar among neighboring than distant locations, and their temporal co-fluctuations also decrease with distance. P. A. P. Moran realized the ecological importance of such ‘spatial synchrony’ when he predicted that isolated populations subject to identical log-linear density-dependent processes should have the same correlation in fluctuations of abundance as the correlation in environmental noise. The contribution from correlated weather to synchrony of populations has later been coined the ‘Moran effect’. Here, we investigate the potential role of the Moran effect in large-scale ecological outcomes of global warming. Although difficult to disentangle from dispersal and species interaction effects, there is compelling evidence from across taxa and ecosystems that spatial environmental synchrony causes population synchrony. Given this, and the accelerating number of studies reporting climate change effects on local population dynamics, surprisingly little attention has been paid to the implications of global warming for spatial population synchrony. However, a handful of studies of insects, birds, plants, mammals and marine plankton indicate decadal-scale changes in population synchrony due to trends in environmental synchrony. We combine a literature review with modeling to outline potential pathways for how global warming, through changes in the mean, variability and spatial autocorrelation of weather, can impact population synchrony over time. This is particularly likely under a ‘generalized Moran effect’, i.e. when relaxing Moran's strict assumption of identical log-linear density-dependence, which is highly unrealistic in the wild. Furthermore, climate change can influence spatial population synchrony indirectly, through its effects on dispersal and species interactions. Because changes in population synchrony may cascade through food-webs, we argue that the (generalized) Moran effect is key to understanding and predicting impacts of global warming on large-scale ecological dynamics, with implications for extinctions, conservation and management.  相似文献   

15.
Small mammal populations often exhibit large-scale spatial synchrony, which is purportedly caused by stochastic weather-related environmental perturbations, predation or dispersal. To elucidate the relative synchronizing effects of environmental perturbations from those of dispersal movements of small mammalian prey or their predators, we investigated the spatial dynamics of Microtus vole populations in two differently structured landscapes which experience similar patterns of weather and climatic conditions. Vole and predator abundances were monitored for three years on 28 agricultural field sites arranged into two 120-km-long transect lines in western Finland. Sites on one transect were interconnected by continuous agricultural farmland (continuous landscape), while sites on the other were isolated from one another to a varying degree by mainly forests (fragmented landscape). Vole populations exhibited large-scale (>120 km) spatial synchrony in fluctuations, which did not differ in degree between the landscapes or decline with increasing distance between trapping sites. However, spatial variation in vole population growth rates was higher in the fragmented than in the continuous landscape. Although vole-eating predators were more numerous in the continuous agricultural landscape than in the fragmented, our results suggest that predators do not exert a great influence on the degree of spatial synchrony of vole population fluctuations, but they may contribute to bringing out-of-phase prey patches towards a regional density level. The spatial dynamics of vole populations were similar in both fragmented and continuous landscapes despite inter-landscape differences in both predator abundance and possibilities of vole dispersal. This implies that the primary source of synchronization lies in a common weather-related environment.  相似文献   

16.
Spatially separated populations of many species fluctuate synchronously. Synchrony typically decays with increasing interpopulation distance. Spatial synchrony, and its distance decay, might reflect distance decay of environmental synchrony (the Moran effect), and/or short-distance dispersal. However, short-distance dispersal can synchronize entire metapopulations if within-patch dynamics are cyclic, a phenomenon known as phase locking. We manipulated the presence/absence of short-distance dispersal and spatially decaying environmental synchrony and examined their separate and interactive effects on the synchrony of the protist prey species Tetrahymena pyriformis growing in spatial arrays of patches (laboratory microcosms). The protist predator Euplotes patella consumed Tetrahymena and generated predator-prey cycles. Dispersal increased prey synchrony uniformly over both short and long distances, and did so by entraining the phases of the predator-prey cycles. The Moran effect also increased prey synchrony, but only over short distances where environmental synchrony was strongest, and did so by increasing the synchrony of stochastic fluctuations superimposed on the predator-prey cycle. Our results provide the first experimental demonstration of distance decay of synchrony due to distance decay of the Moran effect. Distance decay of the Moran effect likely explains distance decay of synchrony in many natural systems. Our results also provide an experimental demonstration of long-distance phase locking, and explain why cyclic populations provide many of the most dramatic examples of long-distance spatial synchrony in nature.  相似文献   

17.
Spatial synchrony of oscillating populations has been observed in many ecological systems, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noises, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we develop a spatially structured population model, which is described by coupled-map lattices and incorporates both dispersal and colored environmental noise. A method for generating time series with desired spatial correlation and color is introduced. Then, we use these generated time series to analyze the influence of noise color on synchrony in population dynamics. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first-order) autocorrelation for autoregressive noise. Patterns of spatial synchrony are considered for stable, periodic and chaotic population dynamics. Numerical simulations verify that environmental noise color has a major influence on the level of synchrony, which depends strongly on how noise is introduced into the model. Furthermore, the influence of noise color also depends on patterns of dispersal between local populations. In addition, the desynchronizing effect of reddened noise is always weaker than that of white noise. From our results, we notice that the role of reddened environmental noise on spatial synchrony should be treated carefully and cautiously, especially for the spatially structured populations linked by dispersal.  相似文献   

18.
Many marine benthic invertebrates pass through a planktonic larval stage whereas others spend their entire lifetimes in benthic habitats. Recent studies indicate that non‐planktonic species show relatively greater fine‐scale patchiness than do planktonic species, but the underlying mechanisms remain unknown. One hypothesis for such a difference is that larval dispersal enhances the connectivity of populations and buffers population fluctuations and reduces local extinction risk, consequently increasing patch occupancy rate and decreasing spatial patchiness. If this mechanism does indeed play a significant role, then the distribution of non‐planktonic species should be more aggregated – both temporally and spatially – than the distribution of species with a planktonic larval stage. To test this prediction, we compared 1) both the spatial and the temporal abundance–occupancy relationships and 2) both the spatial and the temporal mean–variance relationships of population size across species of rocky intertidal gastropods with differing dispersive traits from the Pacific coast of Japan. We found that, compared to planktonic species, non‐planktonic species exhibited 1) a smaller occupancy rate for any given level of mean population size and 2) greater variations in population size, both spatially and temporally. This suggests that the macroecological patterns observed in this study (i.e. the abundance–occupancy relationships and mean–variance relationships of population size across species) were shaped by the effect of larval dispersal dampening population fluctuation, which works over both space and time. While it has been widely assumed that larval dispersal enhances population fluctuations, larval dispersal may in fact enhance the connectively of populations and buffer population fluctuations and reduce local extinction risks.  相似文献   

19.
High dispersal rates between patches in spatially structured populations can impede diversification and homogenize diversity. These homogenizing effects of dispersal are likely to be enhanced by coevolving parasites that impose strong selection on hosts for resistance. However, the interactive effects of dispersal and parasites on host diversification have never been tested. We used spatially structured, experimental populations of the bacterium Pseudomonas fluorescens, cultured with or without the phage SBW25Ф2 under three levels of dispersal (none, localized or global), and quantified diversity in terms of evolved bacterial colony morphologies after approximately 100 bacterial generations. We demonstrate that higher levels of colony morphology richness evolved in the presence of phage, and that dispersal reduced diversity most strongly in the presence of phage. Thus, our results suggest that, while parasites can drive host diversification, host populations coevolving with parasites are more prone to homogenization through dispersal.  相似文献   

20.
The spatial insurance hypothesis predicts that intermediate rates of dispersal between patches in a metacommunity allow species to track favourable conditions, preserving diversity and stabilizing biomass at local and regional scales. However, theory is unclear as to whether dispersal will provide spatial insurance when environmental conditions are changing directionally. In particular, increased temperatures as a result of climate change are expected to cause synchronous growth or decline across species and communities, and this has the potential to erode the stabilizing compensatory dynamics facilitated by dispersal. Here we report on an experimental test of how dispersal affects the diversity and stability of metacommunities under warming using replicate two‐patch pond zooplankton metacommunities. Initial differences in local community composition and abiotic conditions were established by seeding each patch in the metacommunities with plankton and sediment from one of two natural ponds that differed in water chemistry and species composition. We exposed metacommunities to a 2°C increase in average ambient temperature, crossed with three rates of dispersal (none, intermediate, high). In ambient conditions, intermediate dispersal rates preserved diversity and stabilized metacommunities by promoting spatially asynchronous fluctuations in biomass, especially between local populations of the dominant genus, Ceriodaphnia. However, warming synchronized their populations so that these effects of dispersal were lost. Furthermore, because the stabilizing effect of dispersal was primarily due to asynchronous fluctuations between populations of a single genus, metacommunity biomass was stabilized, but dispersal did not stabilize local community biomass. Our results show that dispersal can preserve diversity and provide stability to metacommunities, but also show that this benefit can be eroded when warming is directional and synchronous across patches of a metacommunity, as is expected with climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号