首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
2.
Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life‐history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.  相似文献   

3.
1. Little is known about the dynamics of pathogen (microparasite) infection in wildlife populations, and less still about sources of variation in the risk of infection. Here we present the first detailed analysis of such variation. 2. Cowpox virus is an endemic sublethal pathogen circulating in populations of wild rodents. Cowpox prevalence was monitored longitudinally for 2 years, in populations of field voles exhibiting multiannual cycles of density in Kielder Forest, UK. 3. The probability that available susceptible animals seroconverted in a given trap session was significantly positively related to host density with a 3-month time lag. 4. Males were significantly more likely to seroconvert than females. 5. Despite most infection being found in young animals (because transmission rates were generally high) mature individuals were more likely to seroconvert than immature ones, suggesting that behavioural or physiological changes associated with maturity contribute to variation in infection risk. 6. Hence, these analyses confirm that there is a delayed numerical response of cowpox infection to vole density, supporting the hypothesis that endemic pathogens may play some part in shaping vole cycles.  相似文献   

4.
Although there has been growing interest in the effect of dispersal on species diversity, much remains unknown about how dispersal occurring at multiple scales influences diversity. We used an experimental microbial landscape to determine whether dispersal occurring at two different scales - among local communities and among metacommunities - affects diversity differently. At the local scale, dispersal initially had a positive effect and subsequently a neutral effect on diversity, whereas at the metacommunity and landscape scales, dispersal showed a consistently negative effect. The timing in which dispersal affected beta diversity also differed sharply between local communities and metacommunities. These patterns were explained by scale- and time-dependent effects of dispersal in allowing spread of species and in removing spatial refuges from predators. Our results suggest that the relative contribution of opposing mechanisms by which dispersal affects diversity changes considerably over time and space in hierarchical landscapes in which dispersal occurs at multiple scales.  相似文献   

5.
Pathogens may be important for host population dynamics, as they can be a proximate cause of morbidity and mortality. Infection dynamics, in turn, may be dependent on the underlying condition of hosts. There is a clear potential for synergy between infection and condition: poor condition predisposes to host infections, which further reduce condition and so on. To provide empirical data that support this notion, we measured haematological indicators of infection (neutrophils and monocytes) and condition (red blood cells (RBCs) and lymphocytes) in field voles from three populations sampled monthly for 2 years. Mixed-effect models were developed to evaluate two hypotheses, (i) that individuals with low lymphocyte and/or RBC levels are more prone to show elevated haematological indicators of infection when re-sampled four weeks later, and (ii) that a decline in indicators of condition is likely to follow the development of monocytosis or neutrophilia. We found that individuals with low RBC and lymphocyte counts had increased probabilities of developing monocytosis and higher increments in neutrophils, and that high indices of infection (neutrophilia and monocytosis) were generally followed by a declining tendency in the indicators of condition (RBCs and lymphocytes). The vicious circle that these results describe suggests that while pathogens overall may be more important in wildlife dynamics than has previously been appreciated, specific pathogens are likely to play their part as elements of an interactive web rather than independent entities.  相似文献   

6.
We shall examine the impact of Charles S. Elton's 1924 article on periodic fluctuations in animal populations on the development of modern population ecology. We argue that his impact has been substantial and that during the past 75 years of research on multi-annual periodic fluctuations in numbers of voles, lemmings, hares, lynx and game animals he has contributed much to the contemporary understanding of the causes and consequences of population regulation. Elton was convinced that the cause of the regular fluctuations was climatic variation. To support this conclusion, he examined long-term population data then available. Despite his firm belief in a climatic cause of the self-repeating periodic dynamics which many species display, Elton was insightful and far-sighted enough to outline many of the other hypotheses since put forward as an explanation for the enigmatic long-term dynamics of some animal populations. An interesting, but largely neglected aspect in Elton's paper is that it ends with speculation regarding the evolutionary consequences of periodic population fluctuations. The modern understanding of these issues will also be scrutinised here. In population ecology, Elton's 1924 paper has spawned a whole industry of research on populations displaying multi-annual periodicity. Despite the efforts of numerous research teams and individuals focusing on the origins of multi-annual population cycles, and despite the early availability of different explanatory hypotheses, we are still lacking rigorous tests of some of these hypotheses and, consequently, a consensus of the causes of periodic fluctuations in animal populations. Although Elton would have been happy to see so much effort spent on cyclic populations, we also argue that it is unfortunate if this focus on a special case of population dynamics should distract our attention from more general problems in population and community dynamics.  相似文献   

7.
Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species’ evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号