共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium regulation of thin filament movement in an in vitro motility assay. 总被引:7,自引:1,他引:6 下载免费PDF全文
The ability of calcium to regulate thin filament sliding velocity was studied in an in vitro motility assay system using cardiac troponin and tropomyosin and rhodamine-phalloidin-labeled skeletal actin and skeletal heavy meromyosin to propel the filaments. Measurements showed that both the number of thin filaments sliding and their sliding speed (Sf) were dependent on the calcium concentration in the range of pCa 5 to 9. Thin filament motility was completely inhibited only if troponin and tropomyosin were added at a concentration of 100 nM to the motility assay solution and the pCa was more than 8. The filament sliding speed was dependent on the pCa in a noncooperative fashion (Hill coefficient = 1) and reached maximum at 5 microns/s at a pCa of 5. The number of filaments moving uniformly decreased from > 90% at pCa 5-6 to near zero in less than 1 pCa unit. This behavior may be explained by a hypothesis in which the regulatory proteins control the number of cross-bridge heads interacting with the thin filaments rather than the rate at which they individually hydrolyze ATP or translocate the thin filaments. 相似文献
2.
Using an in vitro motility assay, we have investigated Ca2+ regulation of individual, regulated thin filaments reconstituted from rabbit fast skeletal actin, troponin, and tropomyosin. Rhodamine-phalloidin labeling was used to visualize the filaments by epifluorescence, and assays were conducted at 30 degrees C and at ionic strengths near the physiological range. Regulated thin filaments exhibited well-regulated behavior when tropomyosin and troponin were added to the motility solutions because there was no directed motion in the absence of Ca2+. Unlike F-actin, the speed increased in a graded manner with increasing [Ca2+], whereas the number of regulated thin filaments moving was more steeply regulated. With increased ionic strength, Ca2+ sensitivity of both the number of filaments moving and their speed was shifted toward higher [Ca2+] and was steepest at the highest ionic strength studied (0.14 M gamma/2). Methylcellulose concentration (0.4% versus 0.7%) had no effect on the Ca2+ dependence of speed or number of filaments moving. These conclusions hold for five different methods used to analyze the data, indicating that the conclusions are robust. The force-pCa relationship (pCa = -log10[Ca2+]) for rabbit psoas skinned fibers taken under similar conditions of temperature and solution composition (0.14 M gamma/2) paralleled the speed-pCa relationship for the regulated filaments in the in vitro motility assay. Comparison of motility results with the force-pCa relationship in fibers suggests that relatively few cross-bridges are needed to make filaments move, but many have to be cycling to make the regulated filament move at maximum speed. 相似文献
3.
We observed a three-dimensional up-and-down movement of an actin filament sliding on heavy mero-myosin (HMM) molecules in an in vitro motility assay. The up-and-down movement occurred along the direction perpendicular to the planar glass plane on which the filament demonstrated a sliding movement. The height length of the up-and-down movement was measured by monitoring the extent of diminishing fluorescent emission from the marker attached to the filament in the evanescent field of attenuation. The height lengths whose distribution exhibits a local maximum were found around the two values, 150 nm and 90 nm, separately. This undulating three-dimensional movement of an actin filament suggests that the interactions between myosin (HMM) molecules and the actin filament may temporally be modulated during its sliding movement. 相似文献
4.
A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is presented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data. We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times, the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154-158. We perform additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean speed of the motors in good quantitative agreement with the experimental and numerical results. 相似文献
5.
The actin cytoskeleton is intimately involved in the motile behaviour of animal cells. The structure and dynamic behaviour of actin and its binding proteins have been intensively studied in vitro over the past several decades, culminating in achievements such as an atomic model of the actin filament. Despite this progress, it is not yet clear how the behaviour of these purified proteins in vitro relates to the dynamic behaviour of actin inside living, moving cells. Here we discuss a new model that relates the known dynamic parameters for pure actin to the observed behaviour of actin filaments inside motile cells. 相似文献
6.
In vitro motility assays, in which fluorescently labeled actin filaments are propelled by myosin molecules adhered to a glass coverslip, require that actin filament velocity be determined. We have developed a computer-assisted filament tracking system that reduced the analysis time, minimized investigator bias, and provided greater accuracy in locating actin filaments in video images. The tracking routine successfully tracked filaments under experimental conditions where filament density, size, and extent of photobleaching varied dramatically. Videotaped images of actin filament motility were digitized and processed to enhance filament image contrast relative to background. Once processed, filament images were cross correlated between frames and a filament path was determined. The changes in filament centroid or center position between video frames were then used to calculate filament velocity. The tracking routine performance was evaluated and the sources of noise that contributed to errors in velocity were identified and quantified. Errors originated in algorithms for filament centroid determination and in the choice of sampling interval between video frames. With knowledge of these error sources, the investigator can maximize the accuracy of the velocity calculation through access to user-definable computer program parameters. 相似文献
7.
Motility mutants of Leptospira interrogans serovar illini were isolated and analyzed by dark-field and electron microscopy. Mutants were obtained by screening for small colonies after nitrosoguanidine treatment. One class of mutants did not have hook- or spiral-shaped ends. In addition, the axial filaments from these mutants were not coiled. An analysis of revertants of two of the mutants in this class indicated that the mutations were pleiotropic with respect to motility, hook- and spiral-shaped ends, and axial filament coiling. We conclude that the axial filaments and the hook- and spiral-shaped ends are involved in L. interrogans motility. 相似文献
8.
Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. 下载免费PDF全文
Sarcomere maintenance, the continual process of replacement of contractile proteins of the myofilament lattice with newly synthesized proteins, in fully differentiated contractile cells is not well understood. Adenoviral-mediated gene transfer of epitope-tagged tropomyosin (Tm) and troponin I (TnI) into adult cardiac myocytes in vitro along with confocal microscopy was used to examine the incorporation of these newly synthesized proteins into myofilaments of a fully differentiated contractile cell. The expression of epitope-tagged TnI resulted in greater replacement of the endogenous TnI than the replacement of the endogenous Tm with the expressed epitope-tagged Tm suggesting that the rates of myofilament replacement are limited by the turnover of the myofilament bound protein. Interestingly, while TnI was first detected in cardiac sarcomeres along the entire length of the thin filament, the epitope-tagged Tm preferentially replaced Tm at the pointed end of the thin filament. These results support a model for sarcomeric maintenance in fully differentiated cardiac myocytes where (a) as myofilament proteins turnover within the cell they are rapidly exchanged with newly synthesized proteins, and (b) the nature of replacement of myofilament proteins (ordered or stochastic) is protein specific, primarily affected by the structural properties of the myofilament proteins, and may have important functional consequences. 相似文献
9.
Antifreeze proteins (AFPs), found in certain organisms enduring freezing environments, have the ability to inhibit damaging ice crystal growth. Recently, the repetitive primary sequence of the AFP of perennial ryegrass, Lolium perenne, was reported. This macromolecular antifreeze has high ice recrystallization inhibition activity but relatively low thermal hysteresis activity. We present here a theoretical three-dimensional model of this 118-residue plant protein based on a beta-roll domain with eight loops of 14-15 amino acids. The fold is supported by a conserved valine hydrophobic core and internal asparagine ladders at either end of the roll. Our model, which is the first proposed for a plant AFP, displays two putative, opposite-facing, ice-binding sites with surface complementarity to the prism face of ice. The juxtaposition of the two imperfect ice-binding surfaces suggests an explanation for the protein's inferior thermal hysteresis but superior ice recrystallization inhibition activity and activity when compared with fish and insect AFPs. 相似文献
10.
The central processes responsible for a gradation of muscle torques or joint angles are suggested on the basis of the mass-spring hypothesis. Two fundamental commands (reciprocal and co- activative ) involved in the control over antagonist muscles are defined in terms of shifts of the so-called invariant characteristics (muscle torque vs joint angle). Each of the commands is graded by a neuronal ensemble arranged in line. Excitation propagates along the line at a centrally established rate. As the wave front moves, the output ensemble neurons are tonically recruited, and they discretely contribute to the respective command according to the superposition principle. The terminal position of the wave front of the reciprocal command is responsible for the final angular limb position, whereas the wave velocity--for the movement speed. The coactivation command just enhances muscle stiffness for a time of the movement. The theory presented is sufficiently well-defined to yield a variety of specific and testable predictions. After insignificant modifications the theory may be referred to the generation of the eye and head movements, both slow and fast ones. 相似文献
11.
Intermediate filament protein partnership in astrocytes. 总被引:20,自引:0,他引:20
C Eliasson C Sahlgren C H Berthold J Stakeberg J E Celis C Betsholtz J E Eriksson M Pekny 《The Journal of biological chemistry》1999,274(34):23996-24006
Intermediate filaments are general constituents of the cytoskeleton. The function of these structures and the requirement for different types of intermediate filament proteins by individual cells are only partly understood. Here we have addressed the role of specific intermediate filament protein partnerships in the formation of intermediate filaments in astrocytes. Astrocytes may express three types of intermediate filament proteins: glial fibrillary acidic protein (GFAP), vimentin, and nestin. We used mice with targeted mutations in the GFAP or vimentin genes, or both, to study the impact of loss of either or both of these proteins on intermediate filament formation in cultured astrocytes and in normal or reactive astrocytes in vivo. We report that nestin cannot form intermediate filaments on its own, that vimentin may form intermediate filaments with either nestin or GFAP as obligatory partners, and that GFAP is the only intermediate filament protein of the three that may form filaments on its own. However, such filaments show abnormal organization. Aberrant intermediate filament formation is linked to diseases affecting epithelial, neuronal, and muscle cells. Here we present models by which the normal and pathogenic functions of intermediate filaments may be elucidated in astrocytes. 相似文献
12.
W Rosner 《Analytical biochemistry》1975,67(2):422-427
The concept of the efficiency of filter disk assays is examined from a theoretical viewpoint. It is shown that the approaches which have been recommended to measure efficiency in such assays are somewhat oversimplified and can lead to errors in data interpretation. 相似文献
13.
A. G. Alatyrev M. G. Pyatibratov Y. Kawarabayasi M. Tsujimura A. V. Galeva O. V. Fedorov 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2010,4(1):104-114
A new family of archaeal proteins, CheM, having no homologues among bacteria and eukaryotes, was identified. Genes cheM are represented only in archaea possessing the chemotaxis and generally located close to che and fla loci. There is only one copy of the cheM gene in thermophilic and methanogenic archaea. Halophilic archaea have an additional paralog of the cheM gene. Mutant strains of Halobacterium salinarum R1 with deletions of the cheM1 (OE2402F) and cheM2 (OE2404R) genes were obtained. Mutant strains were not differ from the wild type strain by speed of movement in liquid medium but had appreciable differences in the diameter of a swarm on semi-liquid agar, indicative of reduced chemotaxis. It was demonstrated that the CheM2 protein from H. salinarum R1 co-isolates with protein CheY, the chemotaxis regulator in the conditions of its activation. The specific interaction between proteins CheM and CheY from hyperthermophilic archaea Pyrococcus horikoshii OT3 was also found. We suppose that CheM proteins provide adaptation of the chemotaxis system universal for bacteria and archaea to the specific archaeal flagellar motor apparatus. 相似文献
14.
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge. 相似文献
15.
J R Haeberle K M Trybus M E Hemric D M Warshaw 《The Journal of biological chemistry》1992,267(32):23001-23006
The movement of reconstituted thin filaments over an immobilized surface of thiophosphorylated smooth muscle myosin was examined using an in vitro motility assay. Reconstituted thin filaments contained actin, tropomyosin, and either purified chicken gizzard caldesmon or the purified COOH-terminal actin-binding fragment of caldesmon. Control actin-tropomyosin filaments moved at a velocity of 2.3 +/- 0.5 microns/s. Neither intact caldesmon nor the COOH-terminal fragment, when maintained in the monomeric form by treatment with 10 mM dithiothreitol, had any effect on filament velocity; and yet both were potent inhibitors of actin-activated myosin ATPase activity, indicating that caldesmon primarily inhibits myosin binding as reported by Chalovich et al. (Chalovich, J. M., Hemric, M. E., and Velaz, L. (1990) Ann. N. Y. Acad. Sci. 599, 85-99). Inhibition of filament motion was, however, observed under conditions where cross-linking of caldesmon via disulfide bridges was present. To determine if monomeric caldesmon could "tether" actin filaments to the myosin surface by forming an actin-caldesmon-myosin complex as suggested by Chalovich et al., we looked for caldesmon-dependent filament binding and motility under conditions (80 mM KCl) where filament binding to myosin is weak and motility is not normally seen. At caldesmon concentrations > or = 0.26 microM, actin filament binding was increased and filament motion (2.6 +/- 0.6 microns/s) was observed. The enhanced motility seen with intact caldesmon was not observed with the addition of up to 26 microM COOH-terminal fragment. Moreover, a molar excess of the COOH-terminal fragment competitively reversed the enhanced binding seen with intact caldesmon. These results show that tethering of actin filaments to myosin by the formation of an actin-caldesmon-myosin complex enhanced productive acto-myosin interaction without placing a significant mechanical load on the moving filaments. 相似文献
16.
Actin-based motility: from molecules to movement 总被引:5,自引:0,他引:5
Carlier MF Le Clainche C Wiesner S Pantaloni D 《BioEssays : news and reviews in molecular, cellular and developmental biology》2003,25(4):336-345
Extensive progress has been made recently in understanding the mechanism by which cells move and extend protrusions using site-directed polymerization of actin in response to signalling. Insights into the molecular mechanism of production of force and movement by actin polymerization have been provided by a crosstalk between several disciplines, including biochemistry, biomimetic approaches and computational studies. This review focuses on the biochemical properties of the proteins involved in actin-based motility and shows how these properties are used to generate models of force production, how the predictions of different theoretical models are tested using a biochemically controlled reconstituted motility assay and how the changes in motility resulting from changes to the concentrations of components of the assay can help understand diverse aspects of the motile behavior of living cells. 相似文献
17.
Whether the highly dynamic structure of the vimentin intermediate filament (IF) cytoskeleton responds to cues from cellular organelles, and what proteins might participate in such events is largely unknown. We have shown previously that the Golgi protein formiminotransferase cyclodeaminase (FTCD) binds to vimentin filaments in vivo and in vitro, and that overexpression of FTCD causes dramatic rearrangements of the vimentin IF cytoskeleton (Gao and Sztul, J. Cell Biol. 152, 877-894, 2001). Using real-time imaging, we now show that FTCD causes bundling of individual thinner vimentin filaments into fibers and that the bundling always originates at the Golgi. FTCD appears to be the molecular "glue" since FTCD cross-links vimentin filaments in vitro. To initiate the analysis of structural determinants required for FTCD function in vimentin dynamics, we used structure-based design to generate individual formiminotransferase (FT) and cyclodeaminase (CD) domains, and to produce an enzymatically inactive FTCD. We show that the intact octameric structure is required for FTCD binding to vimentin filaments and for promoting filament assembly, but that eliminating enzymatic activity does not affect FTCD effects on the vimentin cytoskeleton. Our findings indicate that the Golgi protein FTCD is a potent modulator of the vimentin IF cytoskeleton, and suggest that the Golgi might act as a reservoir for proteins that regulate cytoskeletal dynamics. 相似文献
18.
Thick filament movement and isometric tension in activated skeletal muscle. 总被引:3,自引:1,他引:3 下载免费PDF全文
Thick filaments can move from the center of the sarcomere to the Z-disc while the isometric tension remains stable in skinned rabbit psoas fibers activated for several minutes (Horowits and Podolsky, 1987). Using the active and resting tension-length relations and the force-velocity relation, we calculated the time course and mechanical consequences of thick filament movement in the presence and absence of the elastic titin filaments, which link the ends of the thick filaments to the Z-discs and give rise to the resting tension. The calculated time course of thick filament movement exhibits a lag phase, during which the velocity and extent of movement are extremely small. This lag phase is dependent only on the properties of the cross-bridges and the initial position of the thick filament. The time course of thick filament movement in skinned rabbit psoas fibers at 7 degrees C is well fit assuming a small initial thick filament displacement away from the center of the sarcomere; this leads to a lag of approximately 80 s before any significant thick filament movement occurs. In the model incorporating titin filaments, this lag is followed by a phase of slow, steady motion during which isometric tension is stable. The model excluding titin filaments predicts a phase of acceleration accompanied by a 50% decrease in tension. The observed time course of movement and tension are consistent with the model incorporating titin filaments. The long lag phase suggests that in vivo, significant movement of thick filaments is unlikely to occur during a single contraction.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Izard J 《Journal of molecular microbiology and biotechnology》2006,11(3-5):159-166
Development of genetic systems for many bacterial genera, including Treponema, now allow the study of structures that are specific to certain pathogens. The cytoplasmic filament ribbon of treponemes that is involved in the cell division cycle has a unique organization. Cytoplasmic bridging proteins connect the filaments, maintaining the distance between them and providing the overall ribbon-like structure. The filaments are anchored by proteins associated with the inner membrane. Each filament is composed of a unique monomer, the cytoplasmic filament protein A (CfpA), with coiled-coils secondary structures. CfpA is part of a growing family of proteins that we propose to call bacterial intermediate-like filaments (BILF). 相似文献