首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
INTRODUCTION: Cementless THR is a well established, and a widely accepted optimal procedure for younger patients. The cementless Vektor-Titan stem is made of Ti6AI7Nb, has got the shape of a three-dimensional cone, and an optimal proximal anchoring property. MATERIALS AND METHODS: The aim of this prospective study was to scrutinise the outcome of 250 Vektor-Titan stems in cementless THRs with an average follow-up time of 3.0 years (Min: 1, Max: 6). The average age of the patients including 148 women and 102 men was calculated with 54.6 years (Min: 22.5, Max: 77.7). RESULTS: The score according to Merle d'Aubigné improved from preoperative 9.3 (Min: 7, Max: 13) to postoperative 17.0 (Min: 14, Max: 18). Distal cortical hypertrophy and proximal atrophy was detected in 4 cases. Single atrophy of the proximal femur was found in additional 3 cases. Progressive radiolucent lines in zone 1 and 7 according to Gruen were observed in one case. Postoperative local and general complications were seen as two subfascial hematomas, two single dislocations, two recurrent dislocations of the hip prosthesis, 6 lesions of the sciatic nerve (one persisting), two deep venous thrombosis, two pneumonias, and one lethal pulmonary embolism. A stable proximal fixation was achieved in 242 of 250 cases (96.8%). CONCLUSION: The results of this study using the Vektor-Titan stem in cementless total hip arthroplasty showed that the principle of proximal fixation was optimized. Long term follow-up studies are needed to confirm these good results.  相似文献   

2.
Mechanical stability of trees under static loads   总被引:4,自引:0,他引:4  
Wind affects the structure and functioning of a forest ecosystem continuously and may cause significant economic loss in managed forests by reducing the yield of recoverable timber, increasing the cost of unscheduled thinning and clear-cuttings, and creating problems in forestry planning. Furthermore, broken and uprooted trees within the forest are subject to insect attack and may provide a suitable breeding substrate, endangering the remaining trees. Therefore, an improved understanding of the processes behind the occurrence of wind-induced damage is of interest to many forest ecologists, but may also help managers of forest resources to make appropriate management decisions related to risk management. Using fundamental physics, empirical experiments, and mechanistic model-based approaches in interaction, we can study the susceptibility of tree stands to wind damage as affected by the wind and site and tree/stand characteristics and management. Such studies are not possible based on statistical approaches alone, which are not able to define the causal links between tree parameters and susceptibility to wind damage. The aim of this paper is to review the recent work done related to tree-pulling and wind tunnel experiments and mechanistic modeling approaches to increase our understanding of the mechanical stability of trees under static loading.  相似文献   

3.
Mechanical stability of trees under dynamic loads   总被引:3,自引:0,他引:3  
Tree stability in windstorms and tree failure are important issues in urban areas where there can be risks of damage to people and property and in forests where wind damage causes economic loss. Current methods of managing trees, including pruning and assessment of mechanical strength, are mainly based on visual assessment or the experience of people such as trained arborists. Only limited data are available to assess tree strength and stability in winds, and most recent methods have used a static approach to estimate loads. Recent research on the measurement of dynamic wind loads and the effect on tree stability is giving a better understanding of how different trees cope with winds. Dynamic loads have been measured on trees with different canopy shapes and branch structures including a palm (Washingtonia robusta), a slender Italian cypress (Cupressus sempervirens) and trees with many branches and broad canopies including hoop pine (Araucaria cunninghamii) and two species of eucalypt (Eucalyptus grandis, E. teretecornus). Results indicate that sway is not a harmonic, but is very complex due to the dynamic interaction of branches. A new dynamic model of a tree is described, incorporating the dynamic structural properties of the trunk and branches. The branch mass contributes a dynamic damping, termed mass damping, which acts to reduce dangerous harmonic sway motion of the trunk and so minimizes loads and increases the mechanical stability of the tree. The results from 12 months of monitoring sway motion and wind loading forces are presented and discussed.  相似文献   

4.
Surgical treatment of proximal humeral fractures remains challenging in elderly patients, primarily due to insufficient implant fixation. Both bone quality and physiological-like loading conditions are commonly overlooked during pre-clinical in vitro evaluation. However, this knowledge is necessary in order to improve surgical treatment of the proximal humerus and the mechanical behavior of implants, particularly in patients with complex fractures and weak bone stock. We hypothesize that the bone quality has a high influence on the bone straining, independent of the arm position. The goal of this study was to determine the straining of the intact and fractured proximal humerus under physiological-like loading conditions. Furthermore, the impact of augmentation on tissue straining was evaluated.

Two representative humeri were selected for this study, one osteoporotic and one reference quality, and scanned using both QCT and DEXA (average DEXA VALUE=0.26 and 0.49 g/cm2 respectively). Subcaptial defects were generated, then stabilized with a plate prior to mechanical stiffness testing. From the QCT data, finite element models were generated and the in vitro stiffness tests analytically simulated. Under physiological-like loading conditions, the straining of the bone and implant were analyzed for 0°, 90° forward flexion, and 90° abduction.

Maximal strain values were found for the intact and fractured bone at 90° abduction. This study demonstrates that the straining in a fractured bone of poor quality leads to considerably higher bone strains (up to +30%) than in a more healthy bone. Augmentation of a central void under physiological-like loading with commercial cement led to mechanical failure at the bone–cement interface.

New concepts for the surgical treatment of complex fractures of the proximal humerus should take bone distribution into account and thereby allow effective treatment of fractures in osteoporotic patients. The ultimate salvage procedure of augmentation has mechanical limitations as long as current cement materials are used in osteoporotic patients.  相似文献   


5.
6.
7.
Although a number of approaches have attempted to model knee kinematics, rarely have they been validated against in vivo data in a larger subject cohort. Here, we assess the feasibility of four-bar linkage mechanisms in addressing knee kinematics and propose a new approach that is capable of accounting for lengthening characteristics of the ligaments, including possible laxity, as well as the internal/external rotation of the joint. MR scans of the knee joints of 12 healthy volunteers were taken at flexion angles of 0 degrees , 30 degrees and 90 degrees under both passive and active muscle conditions. By reconstructing the surfaces at each position, the accuracy of the four-bar linkage mechanism was assessed for every possible combination of points within each cruciate ligament attachment area. The specific set of parameters that minimized the deviation between the predictions and the in vivo pose was derived, producing a mean error of 1.8 and 2.5 on the medial and 1.7 and 2.4mm on the lateral side at 30 degrees and 90 degrees flexion, respectively, for passive motion, significantly improving on the models that did not consider internal/external rotation. For active flexion, mean medial errors were 3.3 and 4.7 mm and lateral errors 3.4 and 4.8 mm. Using this best parameter set, a generic predictive model was created and assessed against the known in vivo positions, producing a maximum average error of 4.9 mm at 90 degrees flexion. The accuracy achieved shows that kinematics may be accurately reconstructed for subject specific musculoskeletal models to allow a better understanding of the load distribution within the knee.  相似文献   

8.
9.
The short- and long-term successes of tibial cementless implants depend on the initial fixation stability often provided by posts and screws. In this work, a metallic plate was fixed to a polyurethane block with either two bone screws, two smooth-surfaced posts, or two novel smooth-surfaced posts with adjustable inclinations. For this last case, inclinations of 0, 1.5, and 3 deg were considered following insertion. A load of 1031 N was eccentrically applied on the plate at an angle of approximately 14 deg, which resulted in a 1000 N axial compressive force and a 250 N shear force. The response was measured under static and repetitive loading up to 4000 cycles at 1 Hz. The measured results demonstrate subsidence under load, lift-off on the unloaded side, and horizontal translation of the plate specially at the loaded side. Fatigue loading increased the displacements, primarily during the first 100 cycles. Comparison of various fixation systems indicated that the plate with screw fixation was the stiffest with the least subsidence and liftoff. The increase in post inclination from 0 to 3 deg stiffened the plate by diminishing the liftoff. All fixation systems demonstrated deterioration under repetitive loads. In general, the finite element predictions of the experimental fixation systems were in agreement with measurements. The finite element analyses showed that porous coated posts (modeled with nonlinear interface friction with and without coupling) generated slightly less resistance to liftoff than smooth-surfaced posts. In the presence of porous coated posts, Coulomb friction greatly overestimated the rigidity by reducing the liftoff and subsidence to levels even smaller than those predicted for the design with screw fixation. The sequence of combined load application also influenced the predicted response. Finally, the finite element model incorporating measured interface friction and pull-out responses can be used for the analysis of cementless total joint replacement systems during the post-operation period.  相似文献   

10.
The mechanical environment during stair climbing has been associated with patellofemoral pain, but the contribution of loading to this condition is not clearly understood. It was hypothesized that the loading conditions during stair climbing induce higher patellofemoral pressures, a more lateral force distribution on the trochlea and a more lateral shift and tilt of the patella compared to walking at early knee flexion. Optical markers for kinematic measurements were attached to eight cadaveric knees, which were loaded with muscle forces at instances of walking and stair climbing cycles at 12° and 30° knee flexion. Contact mechanics were determined using a pressure sensitive film. At 12° knee flexion, stair climbing loads resulted in higher peak pressure (p=0.012) than walking, more lateral force distribution (p=0.012) and more lateral tilt (p=0.012), whilst mean pressure (p=0.069) and contact area (p=0.123) were not significantly different. At 30° knee flexion, although stair climbing compared to walking loads resulted in significantly higher patellofemoral mean (p=0.012) and peak pressures (p=0.012), contact area (p=0.025), as well as tilt (p=0.017), the medial–lateral force distribution (p=0.674) was not significantly different. No significant differences were observed in patellar shift between walking and stair climbing at either 12° (p=0.093) or 30° (p=0.575) knee flexion. Stair climbing thus leads to more challenging patellofemoral contact mechanics and kinematics than level walking at early knee flexion. The increase in patellofemoral pressure, lateral force distribution and lateral tilt during stair climbing provides a possible biomechanical explanation for the patellofemoral pain frequently experienced during this activity.  相似文献   

11.
A quantitative assay for a primitive human hematopoietic cell has been developed. The cell identified has been assigned the operational designation of long-term culture (LTC)-initiating cell based on its ability when cultured on supportive fibroblast monolayers to give rise to daughter cell(s) detectable by standard in vitro colony assays. Three lines of evidence support the view that the LTC-initiating cell assay may allow the relatively specific enumeration of totipotent cells with in vivo reconstituting potential. These involve the demonstration: (1) that conditions in analogous murine long-term cultures stimulate the extensive amplification (self-renewal) of some totipotent long-term repopulating cells, (2) that most of the LTC-initiating cells in normal human bone marrow are phenotypically different from most of the colony-forming cells present in the same cell suspensions in their possession of a number of characteristics specifically associated with transplantable stem cells; and (3) that cultured marrow cells from patients with chronic myeloid leukemia which, after maintenance under LTC conditions for 10 days contain some normal LTC-initiating cells but no detectable leukemic LTC-initiating cells, can after autografting reconstitute the hematopoietic system with normal cells.  相似文献   

12.
Nitrogen fixation, nitrate assimilation and primary production ((13)C/(15)N method) were investigated during one year and half in the northwestern Mediterranean Sea. Nitrogen fixation was detectable all over the year with rates ranged from 2 to 17 nmol N l(-1) d(-1)(d). Highest values being obtained during spring associated with the phytoplankton bloom. High rates (4-8 nmol N l(-1) d(-1)(d)) were also measured during summer, when primary productivity was very low. Then, diazotrophy process supplies significant new nitrogen during summer oligotrophic periods. This new nitrogen input can balance the annual nitrogen biogeochemical budget in the Mediterranean Sea and should explain the high nitrate/phosphate ratio observed in deep waters.  相似文献   

13.
Primary hyperoxaluria type I is a severe kidney stone disease caused by mutations in the protein alanine:glyoxylate aminotransferase (AGT). Many patients have mutations in AGT that are not deleterious alone but act synergistically with a common minor allele polymorphic variant to impair protein folding, dimerization, or localization. Although studies suggest that the minor allele variant itself is destabilized, no direct stability studies have been carried out. In this report, we analyze AGT function and stability using three approaches. First, we describe a yeast complementation growth assay for AGT, in which we show that human AGT can substitute for function of yeast Agx1 and that mutations associated with disease in humans show reduced growth in yeast. The reduced growth of minor allele mutants reflects reduced protein levels, indicating that these proteins are less stable than wild-type AGT in yeast. We further examine stability of AGT alleles in vitro using two direct methods, a mass spectrometry-based technique (stability of unpurified proteins from rates of H/D exchange) and differential scanning fluorimetry. We also examine the effect of known ligands pyridoxal 5'-phosphate and aminooxyacetic acid on stability. Our work establishes that the minor allele is destabilized and that pyridoxal 5'-phosphate and aminooxyacetic acid binding significantly stabilizes both alleles. To our knowledge, this is the first work that directly measures relative stabilities of AGT variants and ligand complexes. Because previous studies suggest that stabilizing compounds (i.e. pharmacological chaperones) may be effective for treatment of primary hyperoxaluria, we propose that the methods described here can be used in high throughput screens for compounds that stabilize AGT mutants.  相似文献   

14.
A relatively new approach to specimen preservation for morphologic studies uses microwave energy and chemicals. Microwave fixation can produce fixation results equal in quality to chemical fixation methods and equal in speed to freeze fixation methods. The importance of this microwave fixation technology lies in its potential to provide a standardized fixation approach in histopathology, immunohistochemistry, and immunocytochemistry.  相似文献   

15.
16.
The establishment of in vitro culture systems to expand stem cells and to elucidate the niche/stem cell interaction is among the most sought-after culture systems of our time. To further investigate niche/stem cell interactions, we evaluated in vitro cultures of isolated intact male germline-niche complexes (i.e., apical complexes), complexes with empty niche spaces, and completely empty niches (i.e., isolated apical cells) from the testes of Locusta migratoria and the interaction of these complexes with isolated germline stem cells, spermatogonia (of transit-amplifying stages), cyst progenitor cells, cyst progenitor cell-like cells, cyst cells, and follicle envelope cells. The structural characteristics of these cell types allow the identification of the different cell types in primary cultures, which we studied in detail by light and electron microscopy. In intact testes germline stem cells strongly adhere to their niche (the apical cell), but emigrate from their niche and form filopodia if the apical complex is put into culture with "standard media." The lively movements of the long filopodia of isolated germline stem cells and spermatogonia may be indicative of their search for specific signals to home to their niche. All other incubated cell types (except for follicle envelope cells) expressed rhizopodia and lobopodia. Nevertheless isolated germline stem cells in culture do not migrate to empty niche spaces of nearby apical cells. This could indicate that apical cells lose their germline stem cell attracting ability in vitro, although apical cells devoid of germline stem cells either by emigration of germline stem cells or by mechanical removal of germline stem cells are capable of surviving in vitro up to 56 days, forming many small lobopodia and performing amoeboid movements. We hypothesize that the breakdown of the apical complex in vitro with standard media interrupts the signaling between the germline stem cells and the niche (and conceivably the cyst progenitor cells) which directs the typical behavior of the male regenerative center. Previously we demonstrated the necessity of the apical cell for the survival of the germline stem cell. From these studies we are now able to culture viable isolated germline stem cells and all cells of its niche complex, although DNA synthesis stops after Day 1 in culture. This enables us to examine the effects of supplements to our standard medium on the interaction of the germline stem cell with its niche, the apical cell. The supplements we evaluated included conditioned medium, tissues, organs, and hemolymph of male locusts, insect hormones, mammalian growth factors, Ca(2+) ion, and a Ca(2+) ionophore. Although biological effects on the germline stem cell and apical cell could be detected with the additives, none of these supplements restored the in vivo behavior of the incubated cell types. We conclude that the strong adhesion between germline stem cells and apical cells in vivo is actively maintained by peripheral factors that reach the apical complex via hemolymph, since a hemolymph-testis barrier does not exist. The in vitro culture model introduced in this study provides a platform to scan for possible regulatory factors that play a key role in a feedback loop that keeps germline stem cell division and sperm disposal in equilibrium.  相似文献   

17.
The most commonly reported complications related to cementless hip stems are loosening and thigh pain; both of these have been attributed to high levels of relative micromotion at the bone-implant interface due to insufficient primary fixation. Primary fixation is believed by many to rely on achieving a sufficient interference fit between the implant and the bone. However, attempting to achieve a high interference fit not infrequently leads to femoral canal fracture either intra-operatively or soon after. The appropriate range of diametrical interference fit that ensures primary stability without risking femoral fracture is not well understood. In this study, a finite element model was constructed to predict micromotion and, therefore, instability of femoral stems. The model was correlated with an in vitro micromotion experiment carried out on four cadaver femurs. It was confirmed that interference fit has a very significant effect on micromotion and ignoring this parameter in an analysis of primary stability is likely to underestimate the stability of the stem. Furthermore, it was predicted that the optimal level of interference fit is around 50 microm as this is sufficient to achieve good primary fixation while having a safety factor of 2 against femoral canal fracture. This result is of clinical relevance as it indicates a recommendation for the surgeon to err on the side of a low interference fit rather than risking femoral fracture.  相似文献   

18.
Tissue engineering strategies have become a promising option for treating musculoskeletal defects in future. Cord blood includes mesenchymal stem cells which are able to differentiate into several cell lines under lineage specific stimulation including osteoblasts, chondroblasts and adipoblasts. In this study the antigen pattern of cord blood stem cells cultivated onto a porous porcine collagen I/III scaffold is investigated. The cultures were stimulated with osteogenic mixture (dexamethasone, ascorbic acid, glycerolphosphatate [DAG]) over 21days in vitro. The following antigens and markers served for immuncytochemical evaluation: bone sialoprotein, osteocalcin, osteonectin, osteopontin, cartilage proteoglycan, chondrogenic oligomeric matrix protein, collagen I/II/III/X, CD13, CD 31, CD34, CD44, CD45, CD105, fibroblast growth factor receptor 2, vascular endothelial growth factor, vimentin and von-Kossa and HE stainings. We showed that a collagen I/III scaffold is an appropriate cellular carrier for cord blood progenitor cells and allows for an osteoblastic differentiation. Moreover there were differences in antigen pattern, dependent on the location of the adherent cells. CD105 and VEGF were only expressed at the bottom of the biomaterial. Future investigations should show the role of cytomechanical forces in the differentiation of cord blood derived progenitor cells and also if a cell-loaded collagen I/III scaffold is appropriate to stimulate bone regeneration in vivo.  相似文献   

19.
AIMS: The objective of this work was to evaluate the use of wild-type GFP and mutant forms thereof as reporter for gene expression under high pressure conditions. METHODS AND RESULTS: The intensity of fluorescence after high pressure treatment was checked by subjecting cells, crude protein extracts containing GFPs and purified GFPs to pressures ranging from 100 MPa to 900 MPa. All tested GFP's retained fluorescence up to 600 MPa without loss of intensity. Expression of GFP under sublethal conditions was investigated in Escherichia coli with plasmid pQBI63, in which rsGFP is placed downstream of the T7 RNA polymerase binding site. T7 RNA polymerase is controlled in E. coli BL21 (DE3) pLysS by an IPTG inducible lacUV5 promoter. A pressure induced increase of GFP expression was monitored at 50 Mpa and 70 MPa. CONCLUSION: Fluorescence of GFPs is not influenced at pressures at which protein expression still occurs. We showed that the expression system used is inducible by pressurized conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study proved GFP to be a suitable reporter for gene expression studies capable to detect pressure induced gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号