首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetically correlated traits are known to respond to indirect selection pressures caused by directional selection on other traits. It is however unclear how local adaptation in populations diverging along some phenotypic traits but not others is affected by the joint action of gene flow and genetic correlations among traits. This simulation study shows that although gene flow is a potent constraining mechanism of population adaptive divergence, it may induce phenotypic divergence in traits under homogeneous selection among habitats if they are genetically correlated with traits under divergent selection. This correlated phenotypic divergence is a nonmonotonous function of migration and increases with mutational correlation among traits. It also increases with the number of divergently selected traits provided their genetic autonomy relative to the uniformly selected trait is reduced by specific patterns of genetic covariances: populations with lower effective trait dimensionality are more likely to generate very large correlated divergence. The correlated divergence is likely to be picked up by Q(ST)-F(ST) analysis of population genetic differentiation and be erroneously ascribed to adaptive divergence under divergent selection. This study emphasizes the necessity to understand the interaction between selection and the genetic basis of adaptation in a multivariate rather than univariate context.  相似文献   

2.
Comparative studies of quantitative genetic and neutral marker differentiation have provided means for assessing the relative roles of natural selection and random genetic drift in explaining among-population divergence. This information can be useful for our fundamental understanding of population differentiation, as well as for identifying management units in conservation biology. Here, we provide comprehensive review and meta-analysis of the empirical studies that have compared quantitative genetic (Q(ST)) and neutral marker (F(ST)) differentiation among natural populations. Our analyses confirm the conclusion from previous reviews - based on ca. 100% more data - that the Q(ST) values are on average higher than F(ST) values [mean difference 0.12 (SD 0.27)] suggesting a predominant role for natural selection as a cause of differentiation in quantitative traits. However, although the influence of trait (life history, morphological and behavioural) and marker type (e.g. microsatellites and allozymes) on the variance of the difference between Q(ST) and F(ST) is small, there is much heterogeneity in the data attributable to variation between specific studies and traits. The latter is understandable as there is no reason to expect that natural selection would be acting in similar fashion on all populations and traits (except for fitness itself). We also found evidence to suggest that Q(ST) and F(ST) values across studies are positively correlated, but the significance of this finding remains unclear. We discuss these results in the context of utility of the Q(ST)-F(ST) comparisons as a tool for inferring natural selection, as well as associated methodological and interpretational problems involved with individual and meta-analytic studies.  相似文献   

3.
K. Spitze 《Genetics》1993,135(2):367-374
Quantitative genetic analyses for body size and for life history characters within and among populations of Daphnia obtusa reveal substantial genetic variance at both hierarchical levels for all traits measured. Simultaneous allozymic analysis on the same population samples indicate a moderate degree of differentiation: G(ST) = 0.28. No associations between electrophoretic genotype and phenotypic characters were found, providing support for the null hypothesis that the allozymic variants are effectively neutral. Therefore, G(ST) can be used as the null hypothesis that neutral phenotypic evolution within populations led to the observed differentiation for the quantitative traits, which I call Q(ST). The results of this study provide evidence that natural selection has promoted diversification for body size among populations, and has impeded diversification for relative fitness. Analyses of population differentiation for clutch size, age at reproduction, and growth rate indicate that neutral phenotypic evolution cannot be excluded as the cause.  相似文献   

4.
Zhou L  Wang CH  Cheng QX  Wang ZQ 《动物学研究》2012,33(3):314-318
表型性状差异(differentiation in phenotypictraits,PST)和分子遗传差异(differentiation at neutral molecular markers,FST)是近期进化生物学的研究热点之一。闽江水系是我国中华绒螯蟹与合浦绒螯蟹的主要混杂地域,是研究绒螯蟹遗传与进化的理想地之一。为探讨闽江水系绒螯蟹的PST和FST,以2009和2010年度闽江水系的133个绒螯蟹样本为材料,进行了14个表型数量性状差异分析和6个微卫星标记的遗传差异分析。结果发现:除3个表型性状不存在显著差异外,其他表型性状在不同年份间均存在极显著差异(P<0.01);2009年绒螯蟹的平均期望杂合度极显著高于2010年绒螯蟹(P=0.008),而平均等位基因丰富度、观测杂合度和近交系数均不存在显著差异(P=0.136~0.675);年份间的平均FST为0.1429;通过对PST与FST的比较发现,除第二步足掌节长度(F2)性状外,其他表型数量性状的PST值均高于FST值,表明这些性状均受到了较明显的选择压力。该文研究结果为绒螯蟹的分子进化研究积累了资料,也为其他水产生物的PST和FST比较研究提供了参考。  相似文献   

5.
Selection for local adaptation results in genetic differentiation in ecologically important traits. In a perennial, outcrossing model plant Arabidopsis lyrata, several differentiated phenotypic traits contribute to local adaptation, as demonstrated by fitness advantage of the local population at each site in reciprocal transplant experiments. Here we compared fitness components, hierarchical total fitness and differentiation in putatively ecologically important traits of plants from two diverged parental populations from different continents in the native climate conditions of the populations in Norway and in North Carolina (NC, U.S.A.). Survival and number of fruits per inflorescence indicated local advantage at both sites and aster life‐history models provided additional evidence for local adaptation also at the level of hierarchical total fitness. Populations were also differentiated in flowering start date and floral display. We also included reciprocal experimental F1 and F2 hybrids to examine the genetic basis of adaptation. Surprisingly, the F2 hybrids showed heterosis at the study site in Norway, likely because of a combination of beneficial dominance effects from different traits. At the NC site, hybrid fitness was mostly intermediate relative to the parental populations. Local cytoplasmic origin was associated with higher fitness, indicating that cytoplasmic genomes also may contribute to the evolution of local adaptation.  相似文献   

6.
Studies examining the effects of anthropogenic habitat fragmentation on both neutral and adaptive genetic variability are still scarce. We compared tadpole fitness-related traits (viz. survival probability and body size) among populations of the common frog (Rana temporaria) from fragmented (F) and continuous (C) habitats that differed significantly in population sizes (C > F) and genetic diversity (C > F) in neutral genetic markers. Using data from common garden experiments, we found a significant positive relationship between the mean values of the fitness related traits and the amount of microsatellite variation in a given population. While genetic differentiation in neutral marker loci (F(ST)) tended to be more pronounced in the fragmented than in the continuous habitat, genetic differentiation in quantitative traits (Q(ST)) exceeded that in neutral marker traits in the continuous habitat (i.e. Q(ST) > F(ST)), but not in the fragmented habitat (i.e. Q(ST) approximately F(ST)). These results suggest that the impact of random genetic drift relative to natural selection was higher in the fragmented landscape where populations were small, and had lower genetic diversity and fitness as compared to populations in the more continuous landscape. The findings highlight the potential importance of habitat fragmentation in impairing future adaptive potential of natural populations.  相似文献   

7.
The Q(ST)-F(ST) comparison has become an increasingly common method for inferring adaptive quantitative trait divergence among populations. For cases in which there is divergence in multiple traits, most studies have applied the method by performing multiple univariate Q(ST)-F(ST) comparisons. However, because traits are often genetically correlated, such univariate analyses are likely to paint a simplified picture of adaptive divergence. Here we show how the multivariate analogue of Q(ST), F(STq), which accounts for genetic correlations among traits, can be used to supply a more detailed picture of multitrait divergence. We apply the method to naturally occurring genetic variation for a suite of sexually selected display traits in Drosophila serrata. The analyses suggest the operation of divergent multivariate selection that has influenced multiple independent axes of genetic variance in a sex-specific manner. Finally, we show how a comparison of the components of F(STq), the average within and among population genetic variance-covariance matrices, G(W) and G(B), can be used as an additional test of the null expectation of neutral divergence, and allows for an investigation of whether natural populations have diverged along major or minor axes of genetic variance.  相似文献   

8.
Abstract The empirical study of interpopulation variation in life history and other fitness traits has been an important approach to understanding the ecology and evolution of organisms and gaining insight into possible sources of variation. We report a quantitative analysis for variations of five life history traits (larval developmental time, adult body weight, adult lifespan, age at first reproduction, total fecundity) and flight capacity among populations of Epiphyas postvittana originating from four localities in Australia and one in New Zealand. These populations were compared at two temperatures (15° and 25°C) after being maintained under uniform laboratory conditions for 1.5 generations, so that the relative role of genetic divergence and phenotypic plasticity in determining interpopulation variation could be disentangled. Genetic differentiation between populations was shown in all measured traits, with the greatest divergence occurring in developmental time, fecundity and adult body size. However, these traits were highly sensitive to changes in environmental temperatures; and furthermore, significant interactions between population and temperature occurred in all traits except for flight capacity of female moths. Thus, phenotypic plasticity may be another cause of interpopulation variation. The interpopulation variation for some measured traits was apparently related to climatic differences found where the populations originated. Individuals of the populations from the warmer climates tended to develop more slowly at immature stages, producing smaller and less fecund moths but with stronger flight capacity, in comparison to those from the cooler regions. It seems, therefore, that natural populations of E. postvittana have evolved different strategies to cope with local environmental conditions.  相似文献   

9.
Microevolutionary responses to spatial variation in the environment seem ubiquitous, but the relative role of selection and neutral processes in driving phenotypic diversification remain often unknown. The moor frog (Rana arvalis) shows strong phenotypic divergence along an acidification gradient in Sweden. We here used correlations among population pairwise estimates of quantitative trait (P(ST) or Q(ST) from common garden estimates of embryonic acid tolerance and larval life-history traits) and neutral genetic divergence (F(ST) from neutral microsatellite markers), as well as environmental differences (pond pH, predator density, and latitude), to test whether this phenotypic divergence is more likely due to divergent selection or neutral processes. We found that trait divergence was more strongly correlated with environmental differences than the neutral marker divergence, suggesting that divergent natural selection has driven phenotypic divergence along the acidification gradient. Moreover, pairwise P(ST) s of embryonic acid tolerance and Q(ST) s of metamorphic size were strongly correlated with breeding pond pH, whereas pairwise Q(ST) s of larval period and growth rate were more strongly correlated with geographic distance/latitude and predator density, respectively. We suggest that incorporating measurements of environmental variation into Q(ST) -F(ST) studies can improve our inferential power about the agents of natural selection in natural populations.  相似文献   

10.
The impact of natural selection on the adaptive divergence of invasive populations can be assessed by testing the null hypothesis that the extent of quantitative genetic differentiation (Q(ST) ) would be similar to that of neutral molecular differentiation (F(ST) ). Using eight microsatellite loci and a common garden approach, we compared Q(ST) and F(ST) among ten populations of an invasive species Ambrosia artemisiifolia (common ragweed) in France. In a common garden study with varying water and nutrient levels, we measured Q(ST) for five traits (height, total biomass, reproductive allocation, above- to belowground biomass ratio, and days to flowering). Although low F(ST) indicated weak genetic structure and strong gene flow among populations, we found significant diversifying selection (Q(ST) > F(ST) ) for reproductive allocation that may be closely related to fitness. It suggests that abiotic conditions may have exerted selection pressure on A. artemisiifolia populations to differentiate adaptively, such that populations at higher altitude or latitude evolved greater reproductive allocation. As previous studies indicate multiple introductions from various source populations of A. artemisiifolia in North America, our results suggest that the admixture of introduced populations may have increased genetic diversity and additive genetic variance, and in turn, promoted the rapid evolution and adaptation of this invasive species.  相似文献   

11.
BACKGROUND AND AIMS: Among-population differentiation in phenotypic traits and allelic variation is expected as a consequence of isolation, drift, founder effects and local selection. Therefore, investigating molecular and quantitative genetic divergence is a pre-requisite for studies of local adaptation in response to selection under variable environmental conditions. METHODS: Among- and within-population variation were investigated in six geographically separated European populations of the white campion, Silene latifolia, both for molecular variation at six newly developed microsatellite loci and for quantitative variation in morphological and life-history traits. To avoid confounding effects of the maternal environment, phenotypic traits were measured on greenhouse-reared F(1) offspring. Tests were made for clinal variation, and the correlations among molecular, geographic and phenotypic distances were compared with Mantel tests. KEY RESULTS: The six populations of Silene latifolia investigated showed significant molecular and quantitative genetic differentiation. Geographic and phenotypic distances were significantly associated. Age at first flowering increased significantly with latitude and exhibited a Q(st) value of 0.17 in females and 0.10 in males, consistent with adaptation to local environmental conditions. By contrast, no evidence of isolation-by-distance and no significant association between molecular and phenotypic distances were found. CONCLUSIONS: Significant molecular genetic divergence among populations of Silene latifolia, from the European native range is consistent with known limited seed and pollen flow distances, while significant quantitative genetic divergence among populations and clinal variation for age at first flowering suggest local adaptation.  相似文献   

12.
Genetic differentiation in 20 hierarchically sampled populations of wild barley was analyzed with quantitative traits, allozymes and Random Amplified Polymorphic DNAs (RAPDs), and compared for three marker types at two hierarchical levels. Regional subdivision for both molecular markers was much lower than for quantitative traits. For both allozymes and RAPDs, most loci exhibited minor or no regional differentiation, and the relatively high overall estimates of the latter were due to several loci with exceptionally high regional differentiation. The allozyme- and RAPD-specific patterns of differentiation were concordant in general with one another, but not with quantitative trait differentiation. Divergent selection on quantitative traits inferred from very high regional Q(ST) was in full agreement with our previous results obtained from a test of local adaptation and multilevel selection analysis. In contrast, most variation in allozyme and RAPD variation was neutral, although several allozyme loci and RAPD markers were exceptional in their levels of regional differentiation. However, it is not possible to answer the question whether these exceptional loci are directly involved in the response to selection pressure or merely linked to the selected loci. The fact that Q(ST) and F(ST) did not differ at the population scale, that is, within regions, but differed at the regional scale, for which local adaptation has been previously shown, implies that comparison of the level of subdivision in quantitative traits, as compared with molecular markers, is indicative of adaptive population differentiation only when sampling is carried out at the appropriate scale.  相似文献   

13.
The shrub Encelia farinosa (Asteraceae) exhibits geographic variation in aboveground architecture and leaf traits in parallel with environmental variation in temperature and moisture. Measurements of plants occurring across a natural gradient demonstrated that plants in desert populations produce smaller, more pubescent leaves and are more compact and branched than plants in more mesic coastal environments. This phenotypic variation is interpreted in part as adaptive genetic differentiation; small size and pubescence reduce leaf temperature and thus increase water-use efficiency but at the cost of lower photosynthetic rate, which results in slower growth and more compact growth form. We explored the basis of phenotypic variation by planting seed offspring from coastal and desert populations in common gardens in both environments. Phenotypic differences among populations persisted in both common gardens, suggesting a genetic basis for trait variation. Desert offspring outperformed coastal offspring in the desert garden, suggesting superior adaptation to hot, dry conditions. Herbivore damage was greater for all offspring in the coastal garden. Phenotypic characters also showed plastic responses; all offspring had smaller, more pubescent leaves and more compact growth form in the desert garden. Our results confirm that leaf size and pubescence are heritable characters associated with pronounced variation in plant architecture.  相似文献   

14.
Reduced genetic variation at marker loci in small populations has been well documented, whereas the relationship between quantitative genetic variation and population size has attracted little empirical investigation. Here we demonstrate that both neutral and quantitative genetic variation are reduced in small populations of a fragmented plant metapopulation, and that both drift and selective change are enhanced in small populations. Measures of neutral genetic differentiation (F(ST)) and quantitative genetic differentiation (Q(ST)) in two traits were higher among small demes, and Q(ST) between small populations exceeded that expected from drift alone. This suggests that fragmented populations experience both enhanced genetic drift and divergent selection on phenotypic traits, and that drift affects variation in both neutral markers and quantitative traits. These results highlight the need to integrate natural selection into conservation genetic theory, and suggests that small populations may represent reservoirs of genetic variation adaptive within a wide range of environments.  相似文献   

15.
In endangered species, it is critical to analyse the level at which populations interact (i.e. dispersal) as well as the levels of inbreeding and local adaptation to set up conservation policies. These parameters were investigated in the endangered species Parnassia palustris living in contrasted habitats. We analysed population structure in 14 populations of northern France for isozymes, cpDNA markers and phenotypic traits related to fitness. Within population genetic diversity and inbreeding coefficients were not correlated to population size. Populations seem not to have undergone severe recent bottleneck. Conversely to pollen migration, seed migration seems limited at a regional scale, which could prevent colonization of new sites even if suitable habitats appear. Finally, the habitat type affects neither within-population genetic diversity nor genetic and phenotypic differentiation among populations. Thus, even if unnoticed local adaptation to habitats exists, it does not influence gene flow between populations.  相似文献   

16.
The spatial genetic structure of plant populations is determined by a combination of gene flow, genetic drift, and natural selection. Gene flow in most plants can result from either seed or pollen dispersal, but detailed investigations of pollen and seed flow among populations that have diverged following local adaptation are lacking. In this study, we compared pollen and seed flow among 10 populations of sweet vernal grass (Anthoxanthum odoratum) on the Park Grass Experiment. Overall, estimates of genetic differentiation that were based on chloroplast DNA (cpDNA) and, which therefore resulted primarily from seed flow, were lower (average F(ST) = 0.058) than previously published estimates that were based on nuclear DNA (average F(ST) = 0.095). Unlike nuclear DNA, cpDNA showed no pattern of isolation by adaptation; cpDNA differentiation was, however, inversely correlated with the number of additions (nutrients and lime) that each plot had received. We suggest that natural selection is restricting pollen flow among plots, whereas nutrient additions are increasing seed flow and genetic diversity by facilitating the successful germination and growth of immigrant seeds. This study highlights the importance of considering all potential gene flow mechanisms when investigating determinants of spatial genetic structure, and cautions against the widespread assumption that pollen flow is more important than seed flow for population connectivity in wind-pollinated species.  相似文献   

17.
Three measures of divergence, estimated at nine putatively neutral microsatellite markers, 14 quantitative traits, and seven quantitative trait loci (QTL) were compared in eight populations of the three-spined stickleback (Gasterosteus aculeatus L.) living in the Scheldt river basin (Belgium). Lowland estuarine and polder populations were polymorphic for the number of lateral plates, whereas upland freshwater populations were low-plated. The number of short gill rakers and the length of dorsal and pelvic spines gradually declined along a coastal-inland gradient. Plate number, short gill rakers and spine length showed moderate to strong signals of divergent selection between lowland and upland populations in comparison between P(ST) (a phenotypic alternative for Q(ST)) and neutral F(ST). However, such comparisons rely on the unrealistic assumption that phenotypic variance equals additive genetic variance, and that nonadditive genetic effects and environmental effects can be minimized. In order to verify this assumption and to confirm the phenotypic signals of divergence, we tested for divergent selection at the underlying QTL. For plate number, strong genetic evidence for divergent selection between lowland and upland populations was obtained based on an intron marker of the Eda gene, of which the genotype was highly congruent with plate morph. Genetic evidence for divergent selection on short gill rakers was limited to some population pairs where F(ST) at only one of two QTL was detected as an outlier, although F(ST) at both loci correlated significantly with P(ST). No genetic confirmation was obtained for divergent selection on dorsal spine length, as no outlier F(ST)s were detected at dorsal spine QTL, and no significant correlations with P(ST) were observed.  相似文献   

18.
Long-distance transplantation of seed material as done in restoration programs has raised concerns about the risks associated with the introduction of maladapted genotypes that may hybridize with neighboring native conspecifics and decrease local population fitness (outbreeding depression). We studied the consequences of gene flow from foreign provenances into local populations in the common grassland species Plantago lanceolata (Plantaginaceae). Three generations of intraspecific hybrids (F(1), F(2), and backcross to the local plants) were produced by controlled crossings between local plants and plants from geographically or environmentally distant populations. Their performance was compared to that of within-population crosses in a field experiment. Early growth in some interpopulation hybrids was significantly reduced, and this decrease in performance was higher in progeny of crosses with the local population from a different habitat than with geographically distant populations. At the end of the growing season, most fitness-related traits of the interpopulation hybrids were close to the average of their parents. Crosses with low-performing foreign parents therefore resulted in reduced fitness of the hybrids compared to the local plants and dilution of local adaptation. We conclude that the introduction of maladapted populations from distant or ecologically distinct environments might, at least temporarily, decrease the fitness of neighboring local plants.  相似文献   

19.
Comparisons of estimates of genetic differentiation at molecular markers (F(ST)) and at quantitative traits (Q(ST)) are a means of inferring the level and heterogeneity of selection in natural populations. However, such comparisons are questionable because they require that the influence of drift and selection on Q(ST) be detectable over possible background influences of environmental or nonadditive genetic effects on Q(ST)-values. Here we test this using an experimental evolution approach in metapopulations of Arabidopsis thaliana experiencing different levels of drift and selection heterogeneity. We estimated the intensity and heterogeneity of selection on morphological and phenological traits via selection differentials. We demonstrate that Q(ST)-values increased with increasing selection heterogeneity when genetic drift was limited. The effect of selection on Q(ST) was thus detectable despite significant genotype-by-environment interactions that most probably biased the estimates of genetic differentiation. Although they cannot be used as a direct validation of the conclusions of prior studies, our results strongly support both the relevance of Q(ST) as an estimator of genetic differentiation and the role of local selection in shaping the genetic differentiation of natural populations.  相似文献   

20.
In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500?m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST)?>?0.34), which were only weakly differentiated from each other (all F (ST)?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号