首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of dietary supplementation of orotic acid to a diet containing the casein protein were compared with diets containing egg protein, soy protein, or wheat gluten on lipid levels in the liver and serum and activities of ornithine carbamoyltransferase (OCT) and alanine aminotransferase in the serum of rats. We found that supplementation of orotic acid to each diet increased the contents of the liver total lipids, triacylglycerol, and phospholipids compared with those not supplemented. The contents of liver total lipids, triacylglycerol, cholesterol, and phospholipids in rats fed the casein diet were significantly higher than those of rats fed the other three diets when orotic acid was supplemented. The levels of triacylglycerol, cholesterol, and phospholipids in the serum of rats fed the casein diet were markedly decreased by addition of orotic acid. The supplementation of orotic acid significantly increased the activities of both serum OCT and alanine aminotransferase in rats fed the casein diet, but not in rats fed the other diets. In conclusion, liver lipid accumulation induced by dietary orotic acid depends on the type of dietary protein. The enhancement of serum OCT activity may result from liver lipid accumulation in rats fed the casein diet supplemented with orotic acid, demonstrating hepatic damage.  相似文献   

2.
3.
Dietary soy protein, in comparison with casein, generally lowers the serum cholesterol concentration in rats fed on a cholesterol-enriched diet, while mixed results were observed in rats fed on a diet free of cholesterol. Soy protein also suppresses the conversion of linoleic acid to arachidonic acid in the rat liver. The present study examines whether phytate, a minor component of a soy protein isolate, is responsible for these beneficial effects of soy protein. Weanling male rats were fed for 4 weeks on a purified diet containing a 20% level of protein (either casein (CAS), soy protein (SOY), phytate-depleted SOY (PDSOY) or phytate-replenished PDSOY (PRSOY)) and cholesterol (0 or 0.5%). The dietary protein source and phytate level only affected the serum and liver cholesterol concentrations when the animals were fed on the cholesterol-enriched diet, being significantly lower in those rats fed on the SOY and PRSOY diets than in those fed on the CAS diet, while the concentrations in the rats fed on the PDSOY diet were intermediate. When the animals were fed on the cholesterol-free diet, the ratio of (20:3n-6 + 20:4n-6)/18:2n-6 in liver phosphatidylcholine, a delta6 desaturation index, was significantly lower in the SOY diet group than in the CAS, PDSOY and PRSOY diet groups. Dietary cholesterol significantly depressed the ratio, but neither depletion nor replenishment of phytate affected the ratio. These results suggest that phytate in soy protein played a limited role in the cholesterol-lowering effect of soy protein and was not involved in the metabolism of linoleic acid.  相似文献   

4.
Fatty liver is associated with obesity and breast cancer. We used an obese rat model of mammary cancer to examine whether hepatosteatosis is modifiable by diet and associated with altered expression of hepatic lipogenic enzyme genes, thyroid hormone system genes and cholesterol metabolism-related genes. Beginning at the age of 5 weeks, lean and obese female Zucker rats were fed high-isoflavone soy protein- or casein (control protein)-containing diets. Rats were euthanized at 200 days of age [corresponding to 147 days after administration of carcinogen to induce mammary tumors; (Hakkak et al. in, Oncol Lett 2:29–36, 2011)]. Obese rats had a greater degree of liver steatosis than lean rats. Obese casein-fed rats had marked steatosis with small foci of mononuclear infiltration, whereas obese soy protein-fed rats had a significantly lower steatosis index. Comparisons between lean and obese casein-fed rats showed that obesity was associated with significant reductions in hepatic mRNA abundance for Glucose 6-Phosphate Dehydrogenase (G6PD), 6-Phosphogluconate Dehydrogenase (6PGD), Thyroid Receptor Alpha 1 (TRα1), Thyroid Receptor Beta 1 (TRβ1) and Iodothyronine Deiodinase 1 (DIO1). The soy protein diet was associated with increased expression of Fatty Acid Synthase (FASN), Malic Enzyme 1 (ME1), 6PGD, Sterol Regulatory Element Binding Protein-1c (SREBP-1c) and SREBP-2 genes in the livers of obese but not lean rats. Western blot analysis showed a significant induction of ME1 protein expression in the livers of obese, soy protein-fed rats, which paralleled the increased serum insulin level in this group. Long-term soy protein consumption can counter hepatic steatosis while coincidently promoting hepatic lipogenic gene expression, the latter likely a consequence of elevated serum insulin. We suggest that elevations in serum insulin, hepatic lipogenesis and cholesterol synthesis all contributed to the increased tumorigenesis previously observed for the obese, soy protein-fed rats.  相似文献   

5.
Glucagon has been postulated as an important physiological regulator of histidase (Hal) gene expression; however, it has not been demonstrated whether serum glucagon concentration is associated with the type and amount of protein ingested. The purpose of the present work was to study the association between hepatic Hal activity and mRNA concentration in rats fed 18 or 50% casein, isolated soy protein, or zein diets in a restricted schedule of 6 h for 10 days, and plasma glucagon and insulin concentrations. On day 10, five rats of each group were killed at 0900 (fasting), and then five rats were killed after being given the experimental diet for 1 h (1000). Rats fed 50% casein or soy diets showed higher Hal activity than the other groups studied. Rats fed 50% zein diets had higher Hal activity than rats fed 18% casein, soy, or zein diets, but lower activity than rats fed 50% casein or soy diets. Hal mRNA concentration followed a similar pattern. Hal activity showed a significant association with serum concentrations of glucagon. Serum glucagon concentration was significantly correlated with protein intake. Thus the type and amount of protein consumed affect Hal activity and expression through changes in serum glucagon concentrations.  相似文献   

6.
The effect of the supplementation of sulfur amino acids to a low casein or soy protein isolate diet on tissue lipid metabolism was investigated. Supplementation of methionine to a 8% casein diet produced a fatty liver in rats, however, supplementation of methionine to a 8.8% soy protein diet (corresponding to a 8% casein diet as to sulfur amino acids content) did not produce a fatty liver. At the level of 8% or less of soy protein in the diet, the accumulation of liver lipids and serum triglyceride was observed. An amino acid mixture simulating the composition of soy protein isolate caused significant accumulation of liver lipids, but serum triglyceride was not changed. Serum cholesterol in rats fed the soy protein diet was lower than that in rats fed the casein diet, but on feeding the amino acid mixtures simulating these protein diets, there was no difference between the two groups. The small differences between soy protein isolate and casein as to lipid metabolism might be due to the small differences in the contents of sulfur amino acids or the specific nature of the soy protein or casein. The supplemental effect of methionine and cystine was also studied. About 60% of total sulfur amino acids could be substituted by cystine for maximum growth.  相似文献   

7.
This study compared the effects of dietary whey protein with dietary casein or soy protein on glycogen storage and glycoregulatory enzyme activities in the liver of sedentary and exercise-trained rats. Male Sprague-Dawley rats (ca. 130 g) were divided into one sedentary and three exercise-trained groups, with eight animals in each group. Casein was provided as the source of dietary protein in the sedentary group while the exercise-trained groups were fed casein, whey, or soy protein. Rats in the exercise-trained groups ran for 30 mins/day, 4 days/week on a motor-driven treadmill. In the exercise-trained rats, animals fed whey protein had higher liver glycogen content than animals in the other two diet groups. Glucokinase activity was significantly higher in rats fed whey protein compared to that in rats fed soy protein, while glucose 6-phosphatase activity was significantly decreased in animals on the whey protein diet compared with those the other two diets. Although 6-phospho-fructokinase activity was significantly lower in the whey protein group than in the soy protein group, we found that fructose 1,6-bisphosphatase activity was significantly higher in the whey group compared with either the casein or soy groups. Pyruvate kinase activity in rats fed the casein diet was significantly higher than in rats fed either the whey or soy protein diets. In addition, hepatic alanine aminotransferase activity and serum alanine level were also increased in the whey protein group compared with the casein or soy protein groups. Taken together, these results demonstrate that the whey protein diet in exercise-trained rats results in significantly higher levels of liver glycogen, because of the combined effects of regulation of rate limiting glycolytic and gluconeogenic enzyme activities and activation of glycogenesis from alanine via alanine amino-transferase.  相似文献   

8.
Effects of the dietary addition of orotic acid to a diet containing casein as a sole protein source on lipid levels in the liver and serum, activities of antioxidant enzymes in the liver, and some enzyme activities in serum, were compared with other diets containing egg protein, soy protein, or wheat gluten, respectively. 1. The contents in the liver of each lipid were increased by the addition of orotic acid as compared with those values without it. The orotic acid added to the casein diet caused accumulation of more liver total lipids, triacylglycerol, 1,2-diacylglycerol, and phospholipids than those fed three other diets. 2. The addition of orotic acid to the casein, but not to the other three diets, lowered the activities of liver superoxide dismutase and increased the activities of both serum ornithine carbamoyltransferase and alanine aminotransferase. Thus, the significant increase in serum ornithine carbamoyltransferase activities as the marker of liver lesions may result from the marked accumulation of liver lipids, decreased activities of hepatic superoxide dismutase, and the increased level of hepatic 1,2-diacylglycerol, followed by possibly the increased level of superoxide anion and increased activity of protein kinase C in rats fed the casein diet with orotic acid added.  相似文献   

9.
Dietary soy protein isolate (SPI) reduces hepatic lipogenesis by suppressing gene expression of lipogenic enzymes, including acetyl-CoA carboxylase (ACC). In order to elucidate the mechanism of this regulation, the effect of dietary SPI on promoter (PI and PII) specific gene expression of ACC alpha was investigated. Rats were fed experimental diets containing SPI or casein as a nitrogen source. SPI feeding decreased the hepatic contents of total ACC mRNA as well as triglyceride (TG) content, but dietary SPI affected the amount of sterol-regulatory element binding protein (SREBP)-1 mRNA and protein very little. The amount of ACC mRNA transcribed from PII promoter containing SRE was not significantly affected by dietary protein, while a significant decrease in PI-generated ACC mRNA content was observed in rats fed the SPI diet. These data suggest that SPI feeding decreased the hepatic contents of ACC alpha mRNA mainly by regulating PI promoter via a nuclear factor(s) other than SREBP-1.  相似文献   

10.
Soy intake acts hypolipidemically. Besides isoflavones, soy protein itself is suggested to influence plasma lipid concentrations. We investigated the effects of an alcohol-washed isoflavone-poor soy protein isolate on plasma and liver lipids and the hepatic expression of genes encoding proteins involved in cholesterol and fatty acid metabolism. Therefore, rats were fed diets containing 200 g/kg of either ethanol-extracted soy protein isolate or casein over 22 days. Rats fed soy protein isolate had markedly lower concentrations of liver cholesterol and lower concentrations of triglycerides in the liver and in plasma than rats fed casein (P<.05). Rats fed soy protein isolate had lower relative mRNA concentrations of sterol-regulatory element-binding protein (SREBP)-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase, low-density lipoprotein receptor, cholesterol 7alpha-hydroxylase, apolipoprotein B, Delta9-desaturase and glucose-6-phosphate dehydrogenase in the liver than rats fed casein (P<.05). Hepatic mRNA concentration of SREBP-1c tended to be lower in rats fed soy protein isolate (P<.10). Hepatic mRNA concentrations of insulin-induced gene (Insig) 1 and Insig-2 and of microsomal triglyceride transfer protein, as well as plasma concentrations of free fatty acids, insulin and glucagon, were not different between the two groups. In conclusion, this study suggests that isoflavone-poor soy protein isolate affects cellular lipid homeostasis by the down-regulation of SREBPs and its target genes in the liver, which are involved in the synthesis of cholesterol and triglycerides.  相似文献   

11.
The effect of dietary soy protein and flaxseed meal on metabolic parameters was studied in two animal models, F344 rats with normal lipid levels and obese SHR/N-cp rats with elevated levels of cholesterol and triglyceride. The rats were fed AIN 93 diet differing only in the source of protein. The rats were fed either 20% casein, 20% soy protein or 20% flaxseed meal. Plasma was analyzed for cholesterol, triglyceride, uric acid, blood urea nitrogen (BUN), creatinine and total protein. In both strains of rats, flaxseed meal significantly decreased plasma cholesterol and triglyceride concentrations. The effect of soy protein on lipids was not as striking as that of flaxseed meal. Flaxseed meal also lowered uric acid in F344 rats and BUN in SHR/N-cp rats. Since cholesterol, triglyceride and uric acid are independent risk factors for cardiovascular disorders, our data show that both flaxseed meal and soy protein may have beneficial effects. Which chemical constituent(s) of flaxseed meal or soybean is (are) responsible for the beneficial effects need to be identified.  相似文献   

12.
It has been shown that reactive oxygen species are involved in chronic puromycin aminonucleoside (PAN) induced nephrotic syndrome (NS) and that a 20% soy protein diet reduces renal damage in this experimental model. The purpose of the present work was to investigate if a 20% soy protein diet is able to modulate kidney nitrotyrosine formation and the activity of renal antioxidant enzymes (catalase, glutathione peroxidase, Cu,Zn- or Mn-superoxide dismutase) which could explain, at least in part, the protective effect of the soy protein diet in rats with chronic NS induced by PAN. Four groups of rats were studied: (1) Control rats fed 20% casein diet, (2) Nephrotic rats fed 20% casein diet, (3) Control rats fed 20% soy protein diet, and (4) Nephrotic rats fed 20% soy protein diet. Chronic NS was induced by repeated injections of PAN and rats were sacrificed at week nine. The soy protein diet ameliorated proteinuria, hypercholesterolemia, and the increase in serum creatinine and blood urea nitrogen observed in nephrotic rats fed 20% casein diet. Kidney nitrotyrosine formation increased in nephrotic rats fed 20% casein diet and this increase was ameliorated in nephrotic rats fed 20% soy protein diet. However, the soy protein diet was unable to modulate the antioxidant enzymes activities in control and nephrotic rats fed 20% soy protein diet. Food intake was similar in the two diet groups. The protective effect of a 20% soy protein diet on renal damage in chronic nephropathy induced by PAN was associated with the amelioration in the renal nitrotyrosine formation but not with the modulation of antioxidant enzymes.  相似文献   

13.
The purpose of this study was to compare the effects of soy and casein based diets on blood pressure and cardiovascular functions in male and female spontaneously hypertensive rats (SHR). The systolic blood pressure was measured at the beginning and at the end of study. After a five week supplementation period with three different diets, the rats were decapitated and arterial responses and the weight-to-body weight-ratios of the organs were studied. The development of hypertension was attenuated in both female and male rats on soy protein diet when compared to the casein diet. Soy based diet lowered serum total cholesterol level when compared to the control diet. Both casein and soy protein supplementation in diet induced a significant renal hypertrophy in both female and male SHR rats when compared to SHR rats on the control diet. Soy protein supplementation reduced significantly serum estradiol-17beta concentration when compared to the control diet. There were no differences in the serum testosterone concentrations between the diet groups. When compared to the casein based diet the soy based diet attenuated the development of hypertension and decreased serum total cholesterol level in SHRs. These effects were independent of gender. The mechanisms and clinical importance of these findings remain to be clarified.  相似文献   

14.
Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.  相似文献   

15.
The effects of dietary soy isoflavones aglycone and glucoside on lipid metabolism were compared in male Sprague-Dawley rats (4 weeks old) given purified diets containing 0.3% cholesterol. The rats were fed a diet supplemented with either isoflavone aglycone-rich powder (IF-A group) or isoflavone glucoside-rich powder (IF-G group) or isoflavone-free diet (control group) for 40 days. The additional level of isoflavone aglycone moiety in the diet was prepared to the same level (approximately 0.096 g/100 g: approximately 0.1% in diet). The activity of hepatic cholesterol 7alpha-hydroxylase tended to be slightly higher in the rats fed isoflavones than in those fed the isoflavone-free diet. On the other hand, the activity of hepatic Delta6 desaturase in the IF-A group was lower than that of the control group. Reflecting this effect, the Delta6 desaturation indices [(20:3n-6+20:4n-6)/18:2n-6] in liver phospholipids of the IF-A group were lower than those in the control group. Liver and serum total cholesterol levels and liver TG level were also reduced by consumption of isoflavone aglycone. Moreover, serum TG level was lowered by consumption of both isoflavones aglycone and glucoside. The level of serum total isoflavones in the IF-A group was significantly higher than that in the IF-G group. Therefore, we speculate that the absorption speed of isoflavone aglycones might be faster than that of isoflavone glucosides in rats. This study suggests that dietary soy isoflavones, particularly their aglycone form, may exert a beneficial effect on lipid metabolism in rats fed cholesterol.  相似文献   

16.
This study was performed to determine whether intestinal luminal polyamine concentrations are affected by a high soy protein diet when compared with a high casein diet or a normoprotein casein diet. We also determined the effects of these diets, with differences in polyamines content, on mucosal polyamines and ornithine decarboxylase (ODC) activity to assess cell proliferation. Three groups of eight male Wistar rats were fed either a 50% soy protein diet, a 50% casein diet, or an 18% casein diet as a control. After 4 weeks of feeding, both intestinal content and mucosa were recovered. Polyamines were assayed by high performance liquid chromatography. ODC activity was measured by the release of (14)CO(2) from (14)C-L-ornithine. Luminal putrescine and cadaverine concentrations were higher in the jejunum than in the ileum, suggesting an absorptive process. The highest concentrations of intestinal polyamines were observed in rats fed the soy protein diet (P < 0.05). Only minor differences were observed in mucosal polyamines according to the diets. ODC activity was also higher in the intestinal mucosa of rats fed the high soy protein diet (P < 0.05). These results suggest that intestinal luminal polyamine concentrations and ODC activity are modulated by the dietary protein source.  相似文献   

17.
Normal and streptozotocin (STZ)-diabetic rats were studied in order to examine the effects of altering the type of dietary protein on cholesterol homeostasis. Rats were fed a non-purified or a purified diet containing either casein or soybean protein. The results obtained on the specific aspects of lipid metabolism were remarkably similar in control rats fed the non-purified (Purina Lab Chow) diet or the purified diet with the soybean protein. However, most of the findings obtained with the above two groups were different from those obtained with rats fed the purified diet containing casein. In the latter group, plasma cholesterol was elevated following a 15-day feeding period as compared to the other two dietary groups. The excess plasma cholesterol in the casein-fed group was found in two lipoprotein fractions with densities of 1.023-1.045 g/ml and 1.045-1.086 g/ml, respectively. The latter lipoprotein fraction was also enriched with apolipoprotein E. The casein-fed animals also showed a lower fractional rate of plasma cholesterol esterification and an abnormal accumulation of cholesterol in the body despite inhibition of cholesterol synthesis in the liver and in the intestines. Twelve to 15 days after the induction of diabetes, plasma cholesterol increased to a similar extent in the rats on all three diets. However, the distribution of cholesterol among the lipoprotein fractions was markedly different. The percentage of cholesterol in fractions of d less than 1.086 g/ml was increased while that carried in the fraction of d 1.086-1.161 g/ml decreased in the rats fed the nonpurified diet and the casein diet. In contrast, there was no change in the distribution of lipoprotein cholesterol between the diabetic and the control rats fed the soybean protein diet. The hepatic synthesis of cholesterol was unaltered in diabetic rats fed the nonpurified diet and the purified diet with soybean protein, but was increased 2.4-fold in diabetic rats fed casein. Intestinal cholesterol synthesis was increased in all three dietary groups. The increase was highest in the rats fed casein and lowest in rats fed soybean protein. The rate of sterol synthesis in the kidneys was not significantly affected by the diet or diabetes. In all three dietary groups diabetes led to an abnormal accumulation of cholesterol in the body. This accumulation was highest in the casein-fed rats and lowest in those fed the soybean protein diet. The cholesterol content of the kidneys was markedly increased by dietary casein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The effects of orotic acid supplementation to casein, egg protein, soy protein and wheat gluten diets on the lipids of liver and serum were compared. When orotic acid was added, the contents of total lipids and triacylglycerol in the liver of the casein group were significantly higher or tended to be higher than those of the other three dietary groups. Dietary orotic acid had no effect on the food intake. The liver weight, and liver total lipids, triacylglycerol, cholesterol and phospholipids were increased or tended to be increased by the addition of orotic acid. The serum triacylglycerol level was decreased by the addition of orotic acid to either the casein or soy protein diet. Thus, the response to liver lipid accumulation induced by orotic acid feeding depended on the dietary protein type.  相似文献   

19.
The study was undertaken to evaluate the effects of dietary protein sources on lipogenesis and fat deposition in a marine teleost, the European seabass (Dicentrarchus labrax). Four isonitrogenous (crude protein (CP, Nx6.25), 44% DM) and isoenergetic (22-23 kJ/g DM) diets were formulated to contain one of the following as the major protein source: fish meal (FM), one of two soy protein concentrates (SPC) and corn gluten meal (CGM). Apparent digestibility coefficients of the diets and raw ingredients, as well as soluble nitrogen (ammonia and urea) and phosphorus excretion were measured. Growth rates of seabass fed plant protein-based diets were significantly lower than those fed fish meal based diet. The protein utilisation was strongly correlated to the dietary essential amino acids index. Measurements of N excretion (ammonia and urea nitrogen) confirmed these data. Daily fat gain at the whole body level ranged between 1.1 to 1.7 g/kg BW, with the highest values being recorded in fish fed the fish meal based diet. Levels of plasma triglycerides and cholesterol were lower in fish fed soy protein diets than in those fed the diet solely based on fish meal. Soy protein rich diets decreased the activities of selected hepatic lipogenic enzymes (glucose 6-phosphate dehydrogenase, malic enzyme, ATP-citrate lysase, acetylcoenzyme A carboxylase and fatty acid synthetase). Highest lipogenic enzyme activities where found in fish fed the fish meal diet, except for fatty acid synthetase which was increased in seabass fed the corn-gluten meal based diets. Overall data suggest that dietary protein sources affects fat deposition and the lipogenic potential in European seabass.  相似文献   

20.
Soy protein rich in isoflavones profoundly affects lipid metabolism in experimental animals. To distinguish the roles of the protein and isoflavone components of a soy protein preparation in regulating lipid metabolism, we compared the effects of diets containing methanol-washed soy protein low in isoflavone supplemented with a 0-, 0.5- and 4-g/kg isoflavone preparation on hepatic fatty acid metabolism and adipose tissue gene expression in rats. Diets containing soy protein irrespective of the isoflavone levels decreased the activities and mRNA expression of enzymes involved in hepatic fatty acid synthesis to similar levels. Methanol-washed soy protein compared to casein increased the mRNA expression of peroxisome proliferator-activated receptor (PPAR) alpha, and supplementing the soy protein diet with isoflavone further increased this parameter dose-dependently. However, methanol-washed soy protein compared to casein was totally ineffective in altering the activities and mRNA levels of enzymes involved in fatty acid oxidation. Supplementation of soy protein diets with isoflavone slightly increased these parameters. The mRNA level of uncoupling protein (UCP) 1 in brown adipose tissue was significantly increased and mRNA levels of UCP2 and 3, and PPARgamma2 tended to be higher in rats fed methanol-washed soy protein not supplemented with isoflavone than in the animals fed casein. Adding isoflavone to the soy protein diets dose-dependently increased these parameters. These results suggested that the protein rather than isoflavone component is primarily responsible for the physiological activity of soy protein rich in isoflavones in reducing hepatic lipogenesis. However, isoflavones may have a role in regulating heptic fatty acid oxidation and adipose tissue gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号