首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Archaeal dual-guide box C/D small nucleolar RNA-like RNAs (sRNAs) bind three core proteins in sequential order at both terminal box C/D and internal C'/D' motifs to assemble two ribonuclear protein (RNP) complexes active in guiding nucleotide methylation. Experiments have investigated the process of box C/D sRNP assembly and the resultant changes in sRNA structure or "remodeling" as a consequence of sRNP core protein binding. Hierarchical assembly of the Methanocaldococcus jannaschii sR8 box C/D sRNP is a temperature-dependent process with binding of L7 and Nop56/58 core proteins to the sRNA requiring elevated temperature to facilitate necessary RNA structural dynamics. Circular dichroism (CD) spectroscopy and RNA thermal denaturation revealed an increased order and stability of sRNA folded structure as a result of L7 binding. Subsequent binding of the Nop56/58 and fibrillarin core proteins to the L7-sRNA complex further remodeled sRNA structure. Assessment of sR8 guide region accessibility using complementary RNA oligonucleotide probes revealed significant changes in guide region structure during sRNP assembly. A second dual-guide box C/D sRNA from M. jannaschii, sR6, also exhibited RNA remodeling during temperature-dependent sRNP assembly, although core protein binding was affected by sR6's distinct folded structure. Interestingly, the sR6 sRNP followed an alternative assembly pathway, with both guide regions being continuously exposed during sRNP assembly. Further experiments using sR8 mutants possessing alternative guide regions demonstrated that sRNA folded structure induced by specific guide sequences impacted the sRNP assembly pathway. Nevertheless, assembled sRNPs were active for sRNA-guided methylation independent of the pathway followed. Thus, RNA remodeling appears to be a common and requisite feature of archaeal dual-guide box C/D sRNP assembly and formation of the mature sRNP can follow different assembly pathways in generating catalytically active complexes.  相似文献   

2.
3.
Archaeal box C/D sRNAs guide the methylation of specific nucleotides in archaeal ribosomal and tRNAs. Three Methanocaldococcus jannaschii sRNP core proteins (ribosomal protein L7, Nop56/58, and fibrillarin) bind the box C/D sRNAs to assemble the sRNP complex, and these core proteins are essential for nucleotide methylation. A distinguishing feature of the Nop56/58 core protein is the coiled-coil domain, established by alpha-helices 4 and 5, that facilitates Nop56/58 self-dimerization in vitro. The function of this coiled-coil domain has been assessed for box C/D sRNP assembly, sRNP structure, and sRNP-guided nucleotide methylation by mutating or deleting this protein domain. Protein pull-down experiments demonstrated that Nop56/58 self-dimerization and Nop56/58 dimerization with the core protein fibrillarin are mutually exclusive protein:protein interactions. Disruption of Nop56/58 homodimerization by alteration of specific amino acids or deletion of the entire coiled-coil domain had no obvious effect upon core protein binding and sRNP assembly. Site-directed mutation of the Nop56/58 homodimerization domain also had no apparent effect upon either box C/D RNP- or C'/D' RNP-guided nucleotide modification. However, deletion of this domain disrupted guided methylation from both RNP complexes. Nuclease probing of the sRNP assembled with Nop56/58 proteins mutated in the coiled-coil domain indicated that while functional complexes were assembled, box C/D and C'/D' RNPs were altered in structure. Collectively, these experiments revealed that the self-dimerization of the Nop56/58 coiled-coil domain is not required for assembly of a functional sRNP, but the coiled-coil domain is important for the establishment of wild-type box C/D and C'/D' RNP structure essential for nucleotide methylation.  相似文献   

4.
Tran EJ  Zhang X  Maxwell ES 《The EMBO journal》2003,22(15):3930-3940
Box C/D ribonucleoprotein (RNP) complexes direct the nucleotide-specific 2'-O-methylation of ribonucleotide sugars in target RNAs. In vitro assembly of an archaeal box C/D sRNP using recombinant core proteins L7, Nop56/58 and fibrillarin has yielded an RNA:protein enzyme that guides methylation from both the terminal box C/D core and internal C'/D' RNP complexes. Reconstitution of sRNP complexes containing only box C/D or C'/D' motifs has demonstrated that the terminal box C/D RNP is the minimal methylation-competent particle. However, efficient ribonucleotide 2'-O-methylation requires that both the box C/D and C'/D' RNPs function within the full-length sRNA molecule. In contrast to the eukaryotic snoRNP complex, where the core proteins are distributed asymmetrically on the box C/D and C'/D' motifs, all three archaeal core proteins bind both motifs symmetrically. This difference in core protein distribution is a result of altered RNA-binding capabilities of the archaeal and eukaryotic core protein homologs. Thus, evolution of the box C/D nucleotide modification complex has resulted in structurally distinct archaeal and eukaryotic RNP particles.  相似文献   

5.
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.  相似文献   

6.
Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.  相似文献   

7.
Box C/D RNA-protein complexes (RNPs) guide the 2′-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C′/D′ RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins. The interaction of Methanocaldococcus jannaschii (Mj) Nop56/58 with the methyltransferase fibrillarin has been investigated using site-directed mutagenesis of specific amino acids in the N-terminal domain of Nop56/58 that interacts with fibrillarin. Extensive mutagenesis revealed an unusually strong Nop56/58-fibrillarin interaction. Only deletion of the NTD itself prevented dimerization with fibrillarin. The extreme stability of the Nop56/58-fibrillarin heterodimer was confirmed in both chemical and thermal denaturation analyses. However, mutations that did not affect Nop56/58 binding to fibrillarin or sRNP assembly nevertheless disrupted sRNP-guided nucleotide modification, revealing a role for Nop56/58 in methyltransferase activity. This conclusion was supported with the cross-linking of Nop56/58 to the target RNA substrate. The Mj Nop56/58 NTD was further characterized by solving its three-dimensional crystal structure to a resolution of 1.7 Å. Despite low primary sequence conservation among the archaeal Nop56/58 homologs, the overall structure of the archaeal NTD domain is very well conserved. In conclusion, the archaeal Nop56/58 NTD exhibits a conserved domain structure whose exceptionally stable interaction with fibrillarin plays a role in both RNP assembly and methyltransferase activity.  相似文献   

8.
Assembly and guide-target interaction of an archaeal box C/D-guide sRNP was investigated under various conditions by analyzing the lead (II)-induced cleavage of the guide RNA. Guide and target RNAs derived from Haloferax volcanii pre-tRNA(Trp) were used with recombinant Methanocaldococcus jannaschii core proteins in the reactions. Core protein L7Ae binds differentially to C/D and C'/D' motifs of the guide RNA, and interchanging the two motifs relative to the termini of the guide RNA did not affect L7Ae binding or sRNA function. L7Ae binding to the guide RNA exposes its D'-guide sequence first followed by the D guide. These exposures are reduced when aNop5p and aFib proteins are added. The exposed guide sequences did not pair with the target sequences in the presence of L7Ae alone. The D-guide sequence could pair with the target in the presence of L7Ae and aNop5p, suggesting a role of aNop5p in target recruitment and rearrangement of sRNA structure. aFib binding further stabilizes this pairing. After box C/D-guided modification, target-guide pairing at the D-guide sequence is disrupted, suggesting that each round of methylation may require some conformational change or reassembly of the RNP. Asymmetric RNPs containing only one L7Ae at either of the two box motifs can be assembled, but a functional RNP requires L7Ae at the box C/D motif. This arrangement resembles the asymmetric eukaryal snoRNP. Observations of initial D-guide-target pairing and the functional requirement for L7Ae at the box C/D motif are consistent with our previous report of the sequential 2'-O-methylations of the target RNA.  相似文献   

9.
Archaeal box C/D sRNAs guide the 2'-O-methylation of target nucleotides using both terminal box C/D and internal C'/D' RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson-Crick pairing of guide and target nucleotides was found to be essential for methylation, and mismatched bases within the guide:target RNA duplex also disrupted nucleotide modification. However, dependence upon Watson-Crick base-paired guide:target nucleotides for methylation was compromised in elevated Mg(2+) concentrations where mismatched target nucleotides were modified. Nucleotide methylation required that the guide:target duplex consist of an RNA:RNA duplex as a target ribonucleotide within a guide RNA:target DNA duplex that was not methylated. Interestingly, D and D' target RNAs exhibited different levels of methylation when deoxynucleotides were inserted into the target RNA or when target methylation was carried out in elevated Mg(2+) concentrations. These observations suggested that unique structural features of the box C/D and C'/D' RNPs differentially affect their respective methylation capabilities. The ability of the sR8 box C/D sRNP to methylate target nucleotides positioned within highly structured RNA hairpins suggested that the sRNP can facilitate unwinding of double-stranded target RNAs. Finally, increasing target RNA length to extend beyond those nucleotides that base pair with the sRNA guide sequence significantly increased sRNP turnover and thus nucleotide methylation. This suggests that target RNA interaction with the sRNP core proteins is also important for box C/D sRNP-guided nucleotide methylation.  相似文献   

10.
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 ?. The Giardia 15.5kD protein exhibits the typical α-β-α sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.  相似文献   

11.
RNA 2′O-methylation is a frequent modification of rRNA and tRNA and supposed to influence RNA folding and stability. Ribonucleoprotein (RNP) complexes, containing the proteins Nop5, L7A, fibrillarin, and a box C/D sRNA, are guided for 2′O-methylation by interactions of their RNA component with their target RNA. In vitro complex assembly was analyzed for several thermophilic Archaea but in vivo studies are rare, even unavailable for halophilic Archaea. To analyze the putative box C/D RNP complex in the extremely halophilic Halobacterium salinarum NRC-1 we performed pull-down analysis and identified the proteins Nop5, L7A, and fibrillarin and the tRNATrp intron, as a typical box C/D sRNA of this RNP complex in vivo. We show for the first time a ribonucleolytic activity of the purified RNP complex proteins, as well as for the RNP complex containing pull-down fractions. Furthermore, we identified a novel RNA (OE4630R-3′sRNA) as part of the complex, containing the typical boxes C/D and C′/D′ sequence motifs and being twice as abundant as the tRNATrp intron.  相似文献   

12.
Small nucleolar RNAs (designated as snoRNAs in Eukarya or sRNAs in Archaea) can be grouped into H/ACA or C/D box snoRNA (sRNA) subclasses. In Eukarya, H/ACA snoRNAs assemble into a ribonucleoprotein (RNP) complex comprising four proteins: Cbf5p, Gar1p, Nop10p and Nhp2p. A homolog for the Nhp2p protein has not been identified within archaeal H/ACA RNPs thus far, while potential orthologs have been identified for the other three proteins. Nhp2p is related, particularly in the middle portion of the protein sequence, to the archaeal ribosomal protein and C/D box protein L7Ae. This finding suggests that L7Ae may be able to substitute for the Nhp2p protein in archaeal H/ACA sRNAs. By band shift assays, we have analyzed in vitro the interaction between H/ACA box sRNAs and protein L7Ae from the archaeon Archaeoglobus fulgidus. We present evidence that L7Ae forms specific complexes with three different H/ACA sRNAs, designated as Afu-4, Afu-46 and Afu-190 with an apparent K(d) ranging from 28 to 100 nM. By chemical and enzymatic probing we show that distinct bases located within bulges or loops of H/ACA sRNAs interact with the L7Ae protein. These findings are corroborated by mutational analysis of the L7Ae binding site. Thereby, the RNA motif required for L7Ae binding exhibits a structure, designated as the K-turn, which is present in all C/D box sRNAs. We also identified four H/ACA RNAs from the archaeal species Pyrococcus which exhibit the K-turn motif at a similar position in their structure. These findings suggest a triple role for L7Ae protein in Archaea, e.g. in ribosomes as well as H/ACA and C/D box sRNP biogenesis and function by binding to the K-turn motif.  相似文献   

13.
The archaeal box C/D sRNP, the enzyme responsible for 2′-O-methylation of rRNA and tRNA, possesses a nearly perfect axis of symmetry and bipartite structure. This RNP contains two platforms for the assembly of protein factors, the C/D and C′/D′ motifs, acting in conjunction with two guide sequences to direct methylation of a specific 2′-hydroxyl group in a target RNA. While this suggests that a functional asymmetric single-site complex complete with guide sequence and a single box C/D motif should be possible, previous work has demonstrated such constructs are not viable. To understand the basis for a bipartite RNP, we have designed and assayed the activity and specificity of a series of synthetic RNPs that represent a systematic reduction of the wild-type RNP to a fully single-site enzyme. This reduced RNP is active and exhibits all of the characteristics of wild-type box C/D RNPs except it is nonspecific with respect to the site of 2′-O-methylation. Our results demonstrate that protein–protein crosstalk through Nop5p dimerization is not required, but that architecture plays a crucial role in directing methylation activity with both C/D and C′/D′ motifs being required for specificity.  相似文献   

14.
Among the large family of C/D methylation guide RNAs, the intron of euryarchaeal pre-tRNA(Trp) represents an outstanding specimen able to guide in cis, instead of in trans, two 2'-O-methylations in the pre-tRNA exons. Remarkably, both sites of methylation involve nucleotides within the bulge-helix-bulge (BHB) splicing motif, while the RNA-guided methylation and pre-tRNA splicing events depend on mutually exclusive RNA folding patterns. Using the three recombinant core proteins of archaeal C/D RNPs, we have analyzed in vitro RNP assembly of the pre-tRNA and tested its site-specific methylation activity. Recognition by L7Ae of hallmark K-turns at the C/D and C'/D' motifs appears as a crucial assembly step required for subsequent binding of a Nop5p-aFib heterodimer at each site. Unexpectedly, however, even without L7Ae but at a higher concentration of Nop5p-aFib, a substantially active RNP complex can still form, possibly reflecting the higher propensity of the cis-acting system to form guide RNA duplex(es) relative to classical trans- acting C/D RNA guides. Moreover, footprinting data of RNPs, consistent with Nop5p interacting with the non-canonical stem of the K-turn, suggest that binding of Nop5p-aFib to the pre-tRNA-L7Ae complex might direct transition from a splicing-competent structure to an RNA conformer displaying the guide RNA duplexes required for site-specific methylation.  相似文献   

15.
16.
Recent investigations have identified homologs of eukaryotic box C/D small nucleolar RNAs (snoRNAs) in Archaea termed sRNAs. Archaeal homologs of the box C/D snoRNP core proteins fibrillarin and Nop56/58 have also been identified but a homolog for the eukaryotic 15.5kD snoRNP protein has not been described. Our sequence analysis of archaeal genomes reveals that the highly conserved ribosomal protein L7 exhibits extensive homology with the eukaryotic 15.5kD protein. Protein binding studies demonstrate that recombinant Methanoccocus jannaschii L7 protein binds the box C/D snoRNA core motif with the same specificity and affinity as the eukaryotic 15.5kD protein. Identical to the eukaryotic 15.5kD core protein, archaeal L7 requires a correctly folded box C/D core motif and intact boxes C and D. Mutational analysis demonstrates that critical features of the box C/D core motif essential for 15.5kD binding are also required for L7 interaction. These include stem I which juxtaposes boxes C and D, as well as the sheared G:A pairs and protruded pyrimidine nucleotide of the asymmetric bulge region. The demonstrated presence of L7Ae in the Haloarcula marismortui 50S ribosomal subunit, taken with our demonstration of the ability of L7 to bind to the box C/D snoRNA core motif, indicates that this protein serves a dual role in Archaea. L7 functioning as both an sRNP core protein and a ribosomal protein could potentially regulate and coordinate sRNP assembly with ribosome biogenesis.  相似文献   

17.
Methylation of the ribose 2'-hydroxyl, the most widespread modification of ribosomal and splicesomal RNAs, is guided by the box C/D class of small nucleolar RNAs (snoRNAs). Box C/D small nucleolar ribonucleoproteins (snoRNPs) contain four core proteins: fibrillarin, Nop56, Nop58 and 15.5 kDa. We constructed U25 snoRNAs containing a single photoactivatable 4-thiouridine at each U position within the conserved box C/D and C'/D' motifs. Proteins assembled on the snoRNA after injection into Xenopus oocyte nuclei were identified by cross-linking, and reconstituted particles characterized by functional rescue and mutational analyses. Our data argue that box C/D snoRNPs are asymmetric, with the C' box contacting Nop56 and fibrillarin, the C box interacting with Nop58, and the D and D' boxes contacting fibrillarin. No cross-link to 15.5 kDa was detected; its binding is disrupted by 4-thiouridine substitution in position 1 of the C box. Repositioning the guide sequence of U25 upstream of box D instead of D' revealed that both C/D motifs have the potential to function as guide centers, but, surprisingly, there was no alteration in protein cross-linking.  相似文献   

18.
The archaeal L7Ae and eukaryotic 15.5kD protein homologs are members of the L7Ae/15.5kD protein family that characteristically recognize K-turn motifs found in both archaeal and eukaryotic RNAs. In Archaea, the L7Ae protein uniquely binds the K-loop motif found in box C/D and H/ACA sRNAs, whereas the eukaryotic 15.5kD homolog is unable to recognize this variant K-turn RNA. Comparative sequence and structural analyses, coupled with amino acid replacement experiments, have demonstrated that five amino acids enable the archaeal L7Ae core protein to recognize and bind the K-loop motif. These signature residues are highly conserved in the archaeal L7Ae and eukaryotic 15.5kD homologs, but differ between the two domains of life. Interestingly, loss of K-loop binding by archaeal L7Ae does not disrupt C′/D′ RNP formation or RNA-guided nucleotide modification. L7Ae is still incorporated into the C′/D′ RNP despite its inability to bind the K-loop, thus indicating the importance of protein–protein interactions for RNP assembly and function. Finally, these five signature amino acids are distinct for each of the L7Ae/L30 family members, suggesting an evolutionary continuum of these RNA-binding proteins for recognition of the various K-turn motifs contained in their cognate RNAs.  相似文献   

19.
The genome of the hyperthermophilic archaeon Sulfolobus solfataricus contains dozens of small C/D-box sRNAs that use a complementary guide sequence to target 2'-O-ribose methylation to specific locations within ribosomal and transfer RNAs. The sRNAs are approximately 50-60 nucleotides in length and contain two RNA structural kink-turn (K-turn) motifs that are required for assembly with ribosomal protein L7Ae, Nop5, and fibrillarin to form an active ribonucleoprotein (RNP) particle. The complex catalyzes guide-directed methylation to target RNAs. Earlier work in our laboratory has characterized the assembly pathway and methylation reaction using the model sR1 sRNA from Sulfolobus acidocaldarius. This sRNA contains only one antisense region situated adjacent to the D-box, and methylation is directed to position U52 in 16S rRNA. Here we have investigated through RNA mutagenesis, the relationship between the sR1 structure and methylation-guide function. We show that although full activity of the guide requires intact C/D and C'/D' K-turn motifs, each structure plays a distinct role in the methylation reaction. The C/D motif is directly implicated in the methylation function, whereas the C'/D' element appears to play an indirect structural role by facilitating the correct folding of the RNA. Our results suggest that L7Ae facilitates the folding of the K-turn motifs (chaperone function) and, in addition, is required for methylation activity in the presence of Nop5 and Fib.  相似文献   

20.
Archaea use ribonucleoprotein (RNP) machines similar to those found in the eukaryotic nucleolus to methylate ribose residues in nascent ribosomal RNA. The archaeal complex required for this 2'-O-ribose-methylation consists of the C/D box sRNA guide and three proteins, the core RNA-binding aL7a protein, the aNop56 protein and the methyltransferase aFib protein. These RNP machines were reconstituted in vitro from purified recombinant components, and shown to have methylation activity when provided with a simple target oligonucleotide, complementary to the sRNA guide sequence. To obtain a better understanding of the versatility and specificity of this reaction, the activity of reconstituted particles on more complex target substrates, including 5S RNA, tRNA(Gln) and 'double target' oligonucleotides that exhibit either direct or reverse complementarity to both the D' and D box guides, has been examined. The natural 5S and tRNA(Gln) substrates were efficiently methylated in vitro, as long as the complementarity between guide and target was about 10 base pairs in length, and lacked mismatches. Maximal activity of double guide sRNAs required that both methylation sites be present in cis on the target RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号