首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To A  Bai Y  Shen A  Gong H  Umamoto S  Lu S  Liu F 《PloS one》2011,6(4):e17796
Human cytomegalovirus (HCMV) is the largest human herpesvirus and its virion contains many viral encoded proteins found in the capsid, tegument, and envelope. In this study, we carried out a yeast two-hybrid (YTH) analysis to study potential binary interactions among 56 HCMV-encoded virion proteins. We have tested more than 3,500 pairwise combinations for binary interactions in the YTH analysis, and identified 79 potential interactions that involve 37 proteins. Forty five of the 79 interactions were also identified in human cells expressing the viral proteins by co-immunoprecipitation (co-IP) experiments. To our knowledge, 58 of the 79 interactions revealed by YTH analysis, including those 24 that were also identified in co-IP experiments, have not been reported before. Novel potential interactions were found between viral capsid proteins and tegument proteins, between tegument proteins, between tegument proteins and envelope proteins, and between envelope proteins. Furthermore, both the YTH and co-IP experiments have identified 9, 7, and 5 interactions that were involved with UL25, UL24, and UL89, respectively, suggesting that these "hub" proteins may function as the organizing centers for connecting multiple virion proteins in the mature virion and for recruiting other virion proteins during virion maturation and assembly. Our study provides a framework to study potential interactions between HCMV proteins and investigate the roles of protein-protein interactions in HCMV virion formation or maturation process.  相似文献   

2.

Background

Influenza A viruses (IAVs) are important pathogens that affect the health of humans and many additional animal species. IAVs are enveloped, negative single-stranded RNA viruses whose genome encodes at least ten proteins. The IAV nucleoprotein (NP) is a structural protein that associates with the viral RNA and is essential for virus replication. Understanding how IAVs interact with host proteins is essential for elucidating all of the required processes for viral replication, restrictions in species host range, and potential targets for antiviral therapies.

Methods

In this study, the NP from a swine IAV was cloned into a yeast two-hybrid “bait” vector for expression of a yeast Gal4 binding domain (BD)-NP fusion protein. This “bait” was used to screen a Y2H human HeLa cell “prey” library which consisted of human proteins fused to the Gal4 protein’s activation domain (AD). The interaction of “bait” and “prey” proteins resulted in activation of reporter genes.

Results

Seventeen positive bait-prey interactions were isolated in yeast. All of the “prey” isolated also interact in yeast with a NP “bait” cloned from a human IAV strain. Isolation and sequence analysis of the cDNAs encoding the human prey proteins revealed ten different human proteins. These host proteins are involved in various host cell processes and structures, including purine biosynthesis (PAICS), metabolism (ACOT13), proteasome (PA28B), DNA-binding (MSANTD3), cytoskeleton (CKAP5), potassium channel formation (KCTD9), zinc transporter function (SLC30A9), Na+/K+ ATPase function (ATP1B1), and RNA splicing (TRA2B).

Conclusions

Ten human proteins were identified as interacting with IAV NP in a Y2H screen. Some of these human proteins were reported in previous screens aimed at elucidating host proteins relevant to specific viral life cycle processes such as replication. This study extends previous findings by suggesting a mechanism by which these host proteins associate with the IAV, i.e., physical interaction with NP. Furthermore, this study revealed novel host protein-NP interactions in yeast.
  相似文献   

3.
4.
Proteins associated with the murine cytomegalovirus (MCMV) viral particle were identified by a combined approach of proteomic and genomic methods. Purified MCMV virions were dissociated by complete denaturation and subjected to either separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in-gel digestion or treated directly by in-solution tryptic digestion. Peptides were separated by nanoflow liquid chromatography and analyzed by tandem mass spectrometry (LC-MS/MS). The MS/MS spectra obtained were searched against a database of MCMV open reading frames (ORFs) predicted to be protein coding by an MCMV-specific version of the gene prediction algorithm GeneMarkS. We identified 38 proteins from the capsid, tegument, glycoprotein, replication, and immunomodulatory protein families, as well as 20 genes of unknown function. Observed irregularities in coding potential suggested possible sequence errors in the 3'-proximal ends of m20 and M31. These errors were experimentally confirmed by sequencing analysis. The MS data further indicated the presence of peptides derived from the unannotated ORFs ORF(c225441-226898) (m166.5) and ORF(105932-106072). Immunoblot experiments confirmed expression of m166.5 during viral infection.  相似文献   

5.
Human cytomegalovirus (HCMV), a member of the herpesvirus family, is a large complex enveloped virus composed of both viral and cellular gene products. While the sequence of the HCMV genome has been known for over a decade, the full set of viral and cellular proteins that compose the HCMV virion are unknown. To approach this problem we have utilized gel-free two-dimensional capillary liquid chromatography-tandem mass spectrometry (MS/MS) and Fourier transform ion cyclotron resonance MS to identify and determine the relative abundances of viral and cellular proteins in purified HCMV AD169 virions and dense bodies. Analysis of the proteins from purified HCMV virion preparations has indicated that the particle contains significantly more viral proteins than previously known. In this study, we identified 71 HCMV-encoded proteins that included 12 proteins encoded by known viral open reading frames (ORFs) previously not associated with virions and 12 proteins from novel viral ORFs. Analysis of the relative abundance of HCMV proteins indicated that the predominant virion protein was the pp65 tegument protein and that gM rather than gB was the most abundant glycoprotein. We have also identified over 70 host cellular proteins in HCMV virions, which include cellular structural proteins, enzymes, and chaperones. In addition, analysis of HCMV dense bodies indicated that these viral particles are composed of 29 viral proteins with a reduced quantity of cellular proteins in comparison to HCMV virions. This study provides the first comprehensive quantitative analysis of the viral and cellular proteins that compose infectious particles of a large complex virus.  相似文献   

6.
Glycoproteins M and N (gM and gN, respectively) are among the few proteins that are conserved across the herpesvirus family. The function of the complex is largely unknown. Whereas deletion from most alphaherpesviruses has marginal effects on the replication of the respective viruses, both proteins are essential for replication of human cytomegalovirus (HCMV). We have constructed a series of mutants in gN to study the function of this protein. gN of HCMV is a type I glycoprotein containing a short carboxy-terminal domain of 14 amino acids, including two cysteine residues directly adjacent to the predicted transmembrane anchor at positions 125 and 126. Deletion of the entire carboxy-terminal domain as well as substitution with the corresponding region from alpha herpesviruses or mutations of both cysteine residues resulted in a replication-incompetent virus. Recombinant viruses containing point mutations of either cysteine residue could be generated. These viruses were profoundly defective for replication. Complex formation of the mutant gNs with gM and transport of the complex to the viral assembly compartment appeared unaltered compared to the wild type. However, in infected cells, large numbers of capsids accumulated in the cytoplasm that failed to acquire an envelope. Transiently expressed gN was shown to be modified by palmitic acid at both cysteine residues. In summary, our data suggest that the carboxy-terminal domain of gN plays a critical role in secondary envelopment of HCMV and that palmitoylation of gN appears to be essential for function in secondary envelopment of HCMV and virus replication.  相似文献   

7.
We previously described a novel genetic locus within the ULb' region of the human cytomegalovirus (HCMV) genome that, while dispensable for replication in fibroblasts, suppresses replication in hematopoietic progenitors and augments replication in endothelial cells. This locus, referred to as the UL133-UL138 locus, encodes four proteins, pUL133, pUL135, pUL136, and pUL138. In this work, we have mapped the interactions among these proteins. An analysis of all pairwise interactions during transient expression revealed a robust interaction between pUL133 and pUL138. Potential interactions between pUL136 and both pUL133 and pUL138 were also revealed. In addition, each of the UL133-UL138 locus proteins self-associated, suggesting a potential to form higher-order homomeric complexes. As both pUL133 and pUL138 function in promoting viral latency in CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro, we further focused on this interaction. pUL133 and pUL138 are the predominant complex detected when all proteins are expressed together and require no other proteins in the locus for their association. During infection, the interaction between pUL133 and pUL138 or pUL136 can be detected. A recombinant virus that fails to express both pUL133 and pUL138 exhibited a latency phenotype similar to that of viruses that fail to express either pUL133 or pUL138, indicating that these proteins function cooperatively in latency and do not have independent functions that additively contribute to HCMV latency. These studies identify protein interactions among proteins encoded by the UL133-UL138 locus and demonstrate an important interaction impacting the outcome of HCMV infection.  相似文献   

8.
TAF-like functions of human cytomegalovirus immediate-early proteins.   总被引:14,自引:11,他引:3       下载免费PDF全文
  相似文献   

9.
The interactions of the extracellular matrix (ECM) proteins (laminin, elastin, fibronectin, type I collagen, thrombospondin and vitronectin) with the fimbriae of Porphyromonas gingivalis were analyzed based on surface plasmon resonance (SPR) spectroscopy using a biomolecular interaction analyzing system (BIAcore). The BIAcore profiles demonstrated that fimbriae specifically bound to all of the ECM proteins with significant association constants (Ka). Vitronectin showed the highest affinity to fimbriae (Ka = 3.79 x 10(6) M-1), while the affinity of laminin was lowest (Ka = 2.15 x 10(6) M-1). A synthetic peptide which is a potent inhibitor of fimbrial binding to salivary proteins was not significantly effective on the fimbrial interactions with the ECM proteins. Using polystyrene microtiter plates revealed that P. gingivalis fimbriae bound markedly to immobilized fibronectin and type I collagen, while the interaction of fimbriae with the other ECM proteins was not clearly demonstrated. These results suggest that interactions between fimbriae and the ECM proteins occur with specific affinities which are not mediated by mechanisms identical to those of salivary proteins. It was also shown that SPR spectroscopy is a useful method to analyze these specific interactions.  相似文献   

10.
Das S  Vasanji A  Pellett PE 《Journal of virology》2007,81(21):11861-11869
Human cytomegalovirus (HCMV) induces profound changes in infected cell morphology, including a large cytoplasmic inclusion that corresponds to the virion assembly complex (AC). In electron micrographs, the AC is a highly vacuolated part of the cytoplasm. Markers of cellular secretory organelles have been visualized at the outer edge of the AC, and we recently showed that a marker for early endosomes (i.e., early endosome antigen 1) localizes to the center of the AC. Here, we examined the relationship between the AC and components of the secretory apparatus, studied temporal aspects of the dramatic infection-induced cytoplasmic remodeling, examined the three-dimensional structure of the AC, and considered the implications of our observations for models of HCMV virion maturation and egress. We made three major observations. First, in addition to being relocated, the expression levels of some organelle markers change markedly during the period while the AC is developing. Second, based on three-dimensional reconstructions from z-series confocal microscopic images, the observed concentric rings of vesicles derived from the several compartments (Golgi bodies, the trans-Golgi network [TGN], and early endosomes) are arranged as nested cylinders of organelle-specific vesicles. Third, the membrane protein biosynthetic and exocytic pathways from the endoplasmic reticulum to the Golgi bodies, TGN, and early endosomes are in an unusual arrangement that nonetheless allows for a conventional order of biosynthesis and transport. Our model of AC structure suggests a mechanism by which the virus can regulate the order of tegument assembly.  相似文献   

11.
An early step in vaccinia virus morphogenesis, the association of crescent membranes with electron-dense granular material, is perturbed when expression of the viral protein encoded by the A30L or G7L open reading frame is repressed. Under these conditions, we found that phosphorylation of the A17 membrane protein, which is mediated by the F10 kinase, was severely reduced. Furthermore, A30 and G7 stimulated F10-dependent phosphorylation of A17 in the absence of other viral late proteins. Evidence for physical interactions between A30, G7, and F10 was obtained by their coimmunoprecipitation with antibody against A30 or F10. In addition, phosphorylation of A30 was dependent on the F10 kinase and autophosphorylation of F10 was stimulated by A30 and G7. Nevertheless, the association of A30, G7, and F10 occurred even with mutated, catalytically inactive forms of F10. Just as A30 and G7 are mutually dependent on each other for stability, F10 was nearly undetectable in the absence of A30 and G7. The reverse is not true, however, as repression of F10 did not diminish A30 or G7. Interaction of F10 with A30 and G7 presumably occurred within the virus factory areas of the cytoplasm, where each was concentrated. F10 localized predominantly in the cortical region of immature virions, beneath the membrane where A17 is located. F10 remained associated with the particulate core fraction of mature virions after treatment with a nonionic detergent and reducing agent. The formation of protein complexes such as the one involving A30, G7, and F10 may be a mechanism for the regulated packaging and processing of virion components.  相似文献   

12.
13.
14.
In response to virus infection, cells can alter protein expression to modify cellular functions and limit viral replication. To examine host protein expression during infection with human cytomegalovirus (HCMV), an enveloped DNA virus, we performed a semiquantitative, temporal analysis of the cell surface proteome in infected fibroblasts. We determined that resident low density lipoprotein related receptor 1 (LRP1), a plasma membrane receptor that regulates lipid metabolism, is elevated early after HCMV infection, resulting in decreased intracellular cholesterol. siRNA knockdown or antibody-mediated inhibition of LRP1 increased intracellular cholesterol and concomitantly increased the infectious virus yield. Virions produced under these conditions contained elevated cholesterol, resulting in increased infectivity. Depleting cholesterol from virions reduced their infectivity by blocking fusion of the virion envelope with the cell membrane. Thus, LRP1 restricts HCMV infectivity by controlling the availability of cholesterol for the virion envelope, and increased LRP1 expression is likely a defense response to infection.  相似文献   

15.
The assembly of human cytomegalovirus (HCMV) is thought to be similar to that which has been proposed for alphaherpesviruses and involve envelopment of tegumented subviral particles at the nuclear membrane followed by export from the cell by a poorly defined pathway. However, several studies have shown that at least two tegument virion proteins remain in the cytoplasm during the HCMV replicative cycle, thereby suggesting that HCMV cannot acquire its final envelope at the nuclear envelope. We investigated the assembly of HCMV by determining the intracellular trafficking of the abundant tegument protein pp150 (UL32) in productively infected human fibroblasts. Our results indicated that pp150 remained within the cytoplasm throughout the replicative cycle of HCMV and accumulated in a stable, juxtanuclear structure late in infection. Image analysis using a variety of cell protein-specific antibodies indicated that the pp150-containing structure was not a component of the endoplasmic reticulum, (ER), ER-Golgi intermediate compartment, cis or medial Golgi, or lysosomes. Partial colocalization of the structure was noted with the trans-Golgi network, and it appeared to lie in close proximity to the microtubule organizing center. Two additional tegument proteins (pp28 and pp65) and three envelope glycoproteins (gB, gH, and gp65) localized in this same structure late infection. This compartment appeared to be relatively stable since pp150, pp65, and the processed form of gB could be coisolated following cell fractionation. Our findings indicated that pp150 was expressed exclusively within the cytoplasm throughout the infectious cycle of HCMV and that the accumulation of the pp150 in this cytoplasmic structure was accompanied by at least five other virion proteins. These results suggested the possibility that this virus-induced structure represented a cytoplasmic site of virus assembly.  相似文献   

16.
The virion proteins and genomic RNA of human parainfluenza virus 3 have been characterized. The virion contains seven major and two minor proteins. Three proteins of 195 X 10(3) molecular weight (195K), 87K, and 67K are associated with the nucleocapsid of the virion and have been designated L, P, and NP, respectively. Three proteins can be labeled with [14C]glucosamine and have molecular weights of 69K, 60K, and 46K. We have designated these proteins as HN, F0, and F1, respectively. HN protein has interchain disulfide bonds, but does not participate in disulfide bonding to form homomultimeric forms. F1 appears to be derived from a complex, F1,2, that has an electrophoretic mobility similar to that of F0 under nonreducing conditions. A protein of 35K is associated with the envelope components of the virion and aggregates under low-salt conditions; this protein has been designated M. The genome of human parainfluenza virus 3 is a linear RNA molecule with a molecular weight of approximately 4.6 X 10(6).  相似文献   

17.
Curvature-mediated interactions between membrane proteins.   总被引:4,自引:2,他引:4       下载免费PDF全文
K S Kim  J Neu    G Oster 《Biophysical journal》1998,75(5):2274-2291
Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions.  相似文献   

18.
Non-covalent interactions between proteins and polysaccharides   总被引:2,自引:0,他引:2  
Foods with novel or improved properties can be created by utilizing non-covalent interactions between proteins and polysaccharides. In solution, either attractive or repulsive interactions between proteins and polysaccharides can be used to create microstructures that give foods novel textural and sensory properties. At interfaces, attractive electrostatic interactions can be used to create food emulsions with improved stability to environmental stresses or with novel encapsulation-release characteristics.  相似文献   

19.
A group of envelope proteins of human cytomegalovirus, gA protein (L. Pereira, M. Hoffman, M. Tatsuno, and D. Dondero, Virology 139:73-86, 1984; L. Pereira, p. 383-404, in B. Roizman, ed., The herpesviruses, vol. 3, 1985), and two protein mixtures (58,000-molecular-weight [58K]-66K and 130K-66K), separated by serial columns prepared with anti-gA immunoglobulin G from sera of immunized guinea pigs, induced neutralizing antibodies and a cellular immune response in the animals. The gA is a disulfide-linked protein complex consisting of high-molecular-weight (greater than 200K), 130K-150K, and 55K-58K proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号