共查询到20条相似文献,搜索用时 15 毫秒
1.
Odour-guided behaviour is a quantitative trait determined by many genes that are sensitive to gene-environment interactions. Different natural populations are likely to experience different selection pressures on the genetic underpinnings of chemosensory behaviour. However, few studies have reported comparisons of the quantitative genetic basis of olfactory behaviour in geographically distinct populations. We generated isofemale lines of Drosophila melanogaster from six populations in Argentina and measured larval and adult responses to benzaldehyde. There was significant variation within populations for both larval and adult olfactory behaviour and a significant genotype x sex interaction (GSI) for adult olfactory behaviour. However, there is substantial variation in the contribution of GSI to the total phenotypic variance among populations. Estimates of evolvability are orders of magnitude higher for larvae than for adults. Our results suggest that the potential for evolutionary adaptation to the chemosensory environment is greater at the larval feeding stage than at the adult reproductive stage. 相似文献
2.
Jip J. C. Ramakers Phillip Gienapp Marcel E. Visser 《Evolution; international journal of organic evolution》2019,73(2):175-187
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE) and slope (RNS) of the breeding time reaction norm in a long‐term (1973–2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE, but not RNS, of egg‐laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between‐year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS. The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro‐evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima. 相似文献
3.
Transgenerational effects are broader than only parental relationships. Despite mounting evidence that multigenerational effects alter phenotypic and life‐history traits, our understanding of how they combine to determine fitness is not well developed because of the added complexity necessary to study them. Here, we derive a quantitative genetic model of adaptation to an extraordinary new environment by an additive genetic component, phenotypic plasticity, maternal and grandmaternal effects. We show how, at equilibrium, negative maternal and negative grandmaternal effects maximize expected population mean fitness. We define negative transgenerational effects as those that have a negative effect on trait expression in the subsequent generation, that is, they slow, or potentially reverse, the expected evolutionary dynamic. When maternal effects are positive, negative grandmaternal effects are preferred. As expected under Mendelian inheritance, the grandmaternal effects have a lower impact on fitness than the maternal effects, but this dual inheritance model predicts a more complex relationship between maternal and grandmaternal effects to constrain phenotypic variance and so maximize expected population mean fitness in the offspring. 相似文献
4.
We estimated genetic and maternal variance components of larval life history characters in alpine populations of Rana temporaria (the common frog) using a full-sib/half-sib breeding design. We studied trait plasticity by raising tadpoles at 14 or 20°C in the laboratory. Larval period and metamorphic mass were greater at 14°C. Larval period did not differ between populations, but high elevation metamorphs were larger than low elevation metamorphs. Significant additive variation for larval period was detected in the low altitude population. No significant additive variation was detected for mass at metamorphosis (MM), which instead displayed significant maternal effects. Plasticity in metamorphic mass of froglets was greater in the high altitude population. The plastic response of larval period to temperature did not differ between the populations. Evolution of metamorphic mass is likely constrained by lack of additive genetic variation. In contrast, significant heritability for larval period suggests this trait may evolve in response to environmental change. These results differ from other studies on R. temporaria, suggesting that populations of this broadly distributed species present substantial geographic variation in the genetic architecture and plasticity of tadpole life history traits. 相似文献
5.
6.
In the wing dimorphic sand cricket, Gryllus firmus, there is a pronounced trade-off between flight capability and fecundity. This trade-off is found both between morphs and within the macropterous morph, in which fecundity is negatively correlated with the mass of the principle flight muscles, the dorso-longitudinal muscles (DLM). In this paper, we examine how this trade-off is affected by a reduction in food and its genetic basis. We find that the relative fitness of the two wing morphs is not changed although both fecundity and DLM mass are decreased. A quantitative genetic analysis shows that the trade-off function is genetically variable but that most of the variation occurs in the intercept rather than the slope of the function. Analysis further indicates a very high genetic correlation between environments (food ration) supporting the hypothesis of a strong functional constraint between reproduction and flight capability. 相似文献
7.
Kevin J. Parsons Moira Concannon Dina Navon Jason Wang Ilene Ea Kiran Groveas Calum Campbell R. Craig Albertson 《Molecular ecology》2016,25(24):6012-6023
Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long‐standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential. 相似文献
8.
Philip L. Munday Robert R. Warner Keyne Monro John M. Pandolfi Dustin J. Marshall 《Ecology letters》2013,16(12):1488-1500
An increasing number of short‐term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present‐day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change. 相似文献
9.
Are size and arrangement of valve mantle areolae in Aulacoseira Thwaites adapted to light intensity? To test one criterion demonstrating an adaptation, heritability experiments were run on isolates of Aulacoseira subarctica (Müller) Haworth. Several clones of A. subarctica were isolated from Yellowstone Lake (Wyoming, USA), Lewis Lake (Wyoming), and East Rosebud Lake (Montana, USA). Two to four clones from each lake were grown in batch cultures under three irradiance levels: 2, 11.4, and 115 μmol photons·m?2·s?1. Five randomly chosen valves for each of two replicates of each clone were examined using a scanning electron microscope for a total of 300 valves. Size measurements were taken for each valve examined, and images of mantle areolae were captured on film at a magnification of 20,000×. Each image was digitized, and quantitative morphometric areolar characters were measured. A quantitative genetic analysis was performed within each light environment for the mean area of the external opening of mantle areolae, the mean distance between areolae within pervalvar striae, and the mean distance between pervalvar striae. Resulting estimates of heritability from among‐lake and within‐lake analyses indicate that all three mantle areolar characters could presently respond to selection and thus have potentially done so in the past. 相似文献
10.
11.
Emily L. Dittmar Christopher G. Oakley Jon Ågren Douglas W. Schemske 《Molecular ecology》2014,23(17):4291-4303
The genetic basis of phenotypic traits is of great interest to evolutionary biologists, but their contribution to adaptation in nature is often unknown. To determine the genetic architecture of flowering time in ecologically relevant conditions, we used a recombinant inbred line population created from two locally adapted populations of Arabidopsis thaliana from Sweden and Italy. Using these RILs, we identified flowering time QTL in growth chambers that mimicked the natural temperature and photoperiod variation across the growing season in each native environment. We also compared the genomic locations of flowering time QTL to those of fitness (total fruit number) QTL from a previous three‐year field study. Ten total flowering time QTL were found, and in all cases, the Italy genotype caused early flowering regardless of the conditions. Two QTL were consistent across chamber environments, and these had the largest effects on flowering time. Five of the fitness QTL colocalized with flowering time QTL found in the Italy conditions, and in each case, the local genotype was favoured. In contrast, just two flowering time QTL found in the Sweden conditions colocalized with fitness QTL and in only one case was the local genotype favoured. This implies that flowering time may be more important for adaptation in Italy than Sweden. Two candidate genes (FLC and VIN3) underlying the major flowering time QTL found in the current study are implicated in local adaptation. 相似文献
12.
Predator-induced morphological plasticity is a model system for investigating phenotypic plasticity in an ecological context. We investigated the genetic basis of the predator-induced plasticity in Rana lessonae by determining the pattern of genetic covariation of three morphological traits that were found to be induced in a predatory environment. Body size decreased and tail dimensions increased when reared in the presence of preying dragonfly larvae. Genetic variance in body size increased by almost an order of magnitude in the predator environment, and the first genetic principal component was found to be highly significantly different between the two environments. The across environment genetic correlation for body size was significantly below 1 indicating that different genes contributed to this trait in the two environments. Body size may therefore be able to respond to selection independently in the two environments to some extent. 相似文献
13.
Weller SG Sakai AK Culley TM Campbell DR Dunbar-Wallis AK 《Journal of evolutionary biology》2006,19(2):331-342
The transition from biotic to abiotic pollination was investigated using Schiedea, a genus exhibiting a remarkable diversity of inflorescence architecture associated with pollination biology. Heritabilities and genetic correlations of inflorescence traits were estimated in gynodioecious Schiedea salicaria (Caryophyllaceae), a species that has likely undergone a recent transition to wind-pollination. Using a partial diallel crossing design, significant narrow-sense heritabilities were detected for inflorescence condensation (h2 = 0.56 to 0.68 in the two sexes) and other traits related to the extent of wind pollination in Schiedea species. Heritabilities were generally higher in hermaphrodites than in females. Strong genetic correlations may constrain the evolution of some inflorescence traits that facilitate wind pollination, such as simultaneous shortening of inflorescence length and elongation of the subtending internode. The presence of significant narrow-sense heritabilities for traits associated with wind pollination suggests, however, that selection for more effective wind pollination in the windy, pollinator-limited environments where S. salicaria grows could lead to the evolution of the highly condensed inflorescences characteristic of other wind-pollinated species of Schiedea. 相似文献
14.
Numerous empirical studies show that stress of various kinds induces a state of hypermutation in bacteria via multiple mechanisms, but theoretical treatment of this intriguing phenomenon is lacking. We used deterministic and stochastic models to study the evolution of stress-induced hypermutation in infinite and finite-size populations of bacteria undergoing selection, mutation, and random genetic drift in constant environments and in changing ones. Our results suggest that if beneficial mutations occur, even rarely, then stress-induced hypermutation is advantageous for bacteria at both the individual and the population levels and that it is likely to evolve in populations of bacteria in a wide range of conditions because it is favored by selection. These results imply that mutations are not, as the current view holds, uniformly distributed in populations, but rather that mutations are more common in stressed individuals and populations. Because mutation is the raw material of evolution, these results have a profound impact on broad aspects of evolution and biology. 相似文献
15.
Peter H. Van Tienderen 《Evolution; international journal of organic evolution》1991,45(6):1317-1331
Quantitative genetic models are used to investigate the evolution of generalists and specialists in a coarse-grained environment with two habitat types when there are costs attached to being a generalist. The outcomes for soft and hard selection models are qualitatively different. Under soft selection (e.g., for juvenile or male-reproductive traits) the population evolves towards the single peak in the adaptive landscape. At equilibrium, the population mean phenotype is a compromise between the reaction that would be optimal in both habitats and the reaction with the lowest cost. Furthermore, the equilibrium is closer to the optimal phenotype in the most frequent habitat, or the habitat in which selection on the focal trait is stronger. A specialist genotype always has a lower fitness than a generalist, even when the costs are high. In contrast, under hard selection (e.g., for adult or female-reproductive traits) the adaptive landscape can have one, two, or three peaks; a peak represents a population specialized to one habitat, equally adapted to both habitats, or an intermediate. One peak is always found when the reaction with the lowest cost is not much different from the optimal reaction, and this situation is similar to the soft selection case. However, multiple peaks are present when the costs become higher, and the course of evolution is then determined by initial conditions, and the region of attraction of each peak. This implies that the evolution of specialization and phenotypic plasticity may not only depend on selection regimes within habitats, but also on contingent, historical events (migration, mutation). Furthermore, the evolutionary dynamics in changing environments can be widely different for populations under hard and soft selection. Approaches to measure costs in natural and experimental populations are discussed. 相似文献
16.
Victoria Ávila Andrés Pérez‐Figueroa Armando Caballero William G. Hill Aurora García‐Dorado Carlos López‐Fanjul 《Evolution; international journal of organic evolution》2014,68(7):1974-1987
For a quantitative trait under stabilizing selection, the effect of epistasis on its genetic architecture and on the changes of genetic variance caused by bottlenecking were investigated using theory and simulation. Assuming empirical estimates of the rate and effects of mutations and the intensity of selection, we assessed the impact of two‐locus epistasis (synergistic/antagonistic) among linked or unlinked loci on the distribution of effects and frequencies of segregating loci in populations at the mutation‐selection‐drift balance. Strong pervasive epistasis did not modify substantially the genetic properties of the trait and, therefore, the most likely explanation for the low amount of variation usually accounted by the loci detected in genome‐wide association analyses is that many causal loci will pass undetected. We investigated the impact of epistasis on the changes in genetic variance components when large populations were subjected to successive bottlenecks of different sizes, considering the action of genetic drift, operating singly (D), or jointly with mutation (MD) and selection (MSD). An initial increase of the different components of the genetic variance, as well as a dramatic acceleration of the between‐line divergence, were always associated with synergistic epistasis but were strongly constrained by selection. 相似文献
17.
Relyea RA 《Journal of evolutionary biology》2005,18(4):856-866
The evolution of plastic traits requires phenotypic trade-offs and heritable traits, yet the latter requirement has received little attention, especially for predator-induced traits. Using a half-sib design, I examined the narrow-sense heritability of predator-induced behaviour, morphology, and life history in larval wood frogs (Rana sylvatica). Many of the traits had significant additive genetic variation in predator (caged Anax longipes) and no-predator environments. Whereas most traits had moderate to high heritability across environments, tail depth exhibited high heritability with predators but low heritability without predators. In addition, several traits had significant heritability for plasticity, suggesting a potential for selection to act on plasticity per se. Genetic correlations confirmed known phenotypic relationships across environments and identified novel relationships within each environment. This appears to be the first investigation of narrow-sense heritabilities for predator-induced traits and confirms that inducible traits previously shown to be under selection also have a genetic basis and should be capable of exhibiting evolutionary responses. 相似文献
18.
VINCENT M. ECKHART 《Biological journal of the Linnean Society. Linnean Society of London》1993,50(1):47-63
Sexual selection theory predicts that hermaphroditic plants might trade off seed production to attract pollinators. This paper reports a test of this prediction in gynodioecious Phacelia linearis (Hydrophyllaceae), a species in which attractiveness to pollinators increases with corolla diameter. The relationship between corolla diameter and seed production was determined in three natural and three experimental populations. Phenotypic selection analysis was used, with lifetime seed production as a surrogate for fitness. Negative directional selection was expected on hermaphrodite corolla diameter. No directional selection (but possibly stabilizing selection) was expected on corolla diameter in females, which have smaller corollas than hermaphrodites. Shoot biomass and flowering time were included in selection analyses so that the effects of corolla size could be assessed independendy of these correlated characters. A parent-offspring study of the quantitative genetics of these characters also was performed. High seed production was associated with large shoot biomass (especially in natural populations) and early flowering (especially in experimental populations). The effect of hermaphrodite corolla size on seed production was not as predicted. Directional selection on hermaphrodite corolla diameter was generally positive. Directional selection on female corolla diameter was relatively weak and variable; stabilizing selection was found in one population. Most of the phenotypic selection on corolla diameter was caused by its (environmental) correlation with shoot biomass. Although these findings do not support the hypothesis that hermaphrodites trade off seed production to attract pollinators, a cautious interpretation is warranted. In one natural population, insect herbivory generated positive covariance between hermaphrodite corolla diameter and seed number, leading to a spurious estimate of positive directional selection for corolla diameter. Other, undetected sources of positive covariance between corolla size and seed production also might have obscured the expected tradeoff. Corolla diameter was found to be heritable, but shoot biomass and flowering time were not. The genetic correlation between hermaphrodite corolla diameter and female corolla diameter was positive and significant, but it was significantly less than 1, so corolla size could evolve independently in the two genders. 相似文献
19.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males. 相似文献
20.
Massimo Pigliucci 《Trends in plant science》1998,3(12):485-489
The crucifer Arabidopsis thaliana has been the subject of intense research into molecular and developmental genetics. One of the consequences of having this wealth of physiological and molecular data available, is that ecologists and evolutionary biologists have begun to incorporate this model system into their studies. Current research on A. thaliana and its close relatives ably illustrates the potential for synergy between mechanistic and organismal biology. On the one hand, mechanistically oriented research can be placed in an historical context, which takes into account the particular phylogenetic history and ecology of these species. This helps us to make sense of redundancies, anomalies and sub-optimalities that would otherwise be difficult to interpret. On the other hand, ecologists and evolutionary biologists now have the opportunity to investigate the physiological and molecular basis for the phenotypic changes they observe. This provides new insight into the mechanisms that influence evolutionary change. 相似文献