首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to maximize their fitness under Local Mate Competition (LMC), arrhenotokous female wasps have to produce a precise sex ratio when encountering hosts. Recent progress in the theory of hymenopterous parasitoid reproduction suggest that they manage to do it by laying male and female eggs in a particular order and that such reproductive strategies are adaptive. Therefore, the determinism of such sequential patterns would be regulated by genetic control on which natural selection could act. To test this hypothesis, sequences of oviposition were recorded in a set ofTrichogramma brassicae Bezdenko (Hymenoptera; Trichogrammatidae) females and in their daughters by providing themEphestia kuehniella Zeller (Lepidoptera; Pyralidae) eggs. In order to describe accurately sex pattern within these oviposition sequences, I present a joined non-parametric and multivariate statistical method. It is shown thatT. brassicae females do not produce male and female eggs in random sequences. Moreover, the way they organize the sequence of the sexes in their progeny seems to be under a strong genetic control. The evolutionary consequences of such results are discussed.  相似文献   

2.
Determining the mechanisms governing sex-ratio variation in dioecious organisms represents a central problem in evolutionary biology. It has been proposed that in plants with sex chromosomes competition between pollen tubes of female- versus male-determining microgametophytes (certation) causes female-biased primary sex ratios. Experimental support for this hypothesis is limited and recent workers have cast doubt on whether pollen-tube competition can modify sex ratios in dioecious plants. Here we investigate the influence of variation in pollination intensity on sex ratios in Rumex nivalis, a wind-pollinated alpine herb with strongly female-biased sex ratios. In a garden experiment, we experimentally manipulated pollination intensity using three concentric rings of female recipient plants at different distances from a central group of male pollen donors. This design enabled us to test the hypothesis that increasing pollen load size, by intensifying gametophyte competition, promotes female-biased sex ratios in R. nivalis. We detected a significant decline in pollen load at successive distance classes with concomitant reductions in seed set. Sex ratios of progeny were always female biased, but plants at the closest distance to male donors exhibited significantly greater female bias than more distant plants. The amount of female bias was positively correlated with the seed set of inflorescences. Hand pollination of stigmas resulted in approximately 100-fold higher stigmatic pollen loads than wind-pollinated stigmas and produced exceptionally female-biased progenies (female frequency = 0.96). Our results are the first to demonstrate a functional relation between stigmatic pollen capture, seed set, and sex ratio and suggest that certation can contribute towards female-biased sex ratios in dioecious plants.  相似文献   

3.
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

4.
Previous studies on sex allocation in simultaneous hermaphrodites have typically focused either on evolutionary or one-time, ontogenetic optimization of sex allocation, ignoring variation within an individual's lifetime. Here, we study whether hermaphrodites also possess facultative sex allocation, that is, a phenotypic flexibility, allowing them to distribute resources to either sex in an opportunistic way during their adult lifetime. We used the simultaneously hermaphroditic free-living flatworm Macrostomum lignano and raised individuals in pairs and groups of eight worms (further called octets) until sexual maturity was reached and sex allocation for the current conditions was expected to be set. Treatment groups were subsequently transferred to the alternative group size, that is, from pairs to octets or from octets to pairs, and compared to two control groups, which were transferred without changing group size. The results show that worms in treatment groups responded as expected by the local mate competition theory for simultaneous hermaphrodites: increasing group size resulted in a shift toward a more male-biased sex allocation and vice versa. These findings reveal that sex allocation in these animals is not fixed during ontogeny, but remains flexible after maturation. We argue that phenotypically flexible sex allocation in hermaphroditic animals may help us to understand the evolution and ecology of hermaphroditism.  相似文献   

5.
Resource allocation plasticity enables individuals to alter patterns of nutrient use between reproductive and vegetative output to better fit their current environment. In sexually labile plant species, abiotic environmental factors can influence expression of dimorphic gender, resulting in environmental sex determination (ESD), which potentially reduces the need for plasticity of resource allocation by preemptively matching an individual’s future nutrient demands to resource availability in its location. Ceratopteris richardii gametophytes exhibit gender‐dependent differences in relative carbon and nitrogen content, and ESD in certain nutrient environments. This study examined whether prior ESD in C. richardii gametophyte populations reduced subsequent plasticity of reproductive allocation compared to instances where no ESD occurred, by quantifying phenotypic responses to reduced P, N, or CO2 availabilities. All three nutrient‐limited environments resulted in decreased size of egg‐bearing (meristic) gametophytes compared to nonlimited environments, but gametophytes failed to respond to N and CO2 limitation at the time of sex determination, resulting in no ESD. N limitation resulted in a predictable allometric re‐allocation of resources based on small gametophyte size, whereas CO2 limitation caused a change in reproductive output consistent with true plasticity. Withholding exogenous P caused ESD and had no effect on relative reproductive output of resultant meristic gametophytes because the size decrease was minor. Under P limitation, ESD matched the resource demands of gender phenotypes to their environment before the onset of developmental dimorphism, reducing the need for large allocation adjustments after sex determination.  相似文献   

6.
Does the mode of self-pollination affect the evolutionarily stable allocation to male vs. female function? We distinguish the following scenarios. (1) An ‘autogamous’ species, in which selfing occurs within the flower prior to opening. The pollen used in selfing is a constant fraction of all pollen grains produced. (2) A species with ‘abiotic pollination’, in which selfing occurs when pollen dispersed in one flower lands on the stigma of a nearby flower on the same plant (geitonogamy). The selfing rate increases with male allocation but a higher selfing rate does not mean a reduced export of pollen. (3) An ‘animal-pollinated’ species with geitonogamous selfing. Here the selfing rate also increases with male allocation, but pollen export to other plants in the population is a decelerating function of the number of simultaneously open flowers. In all three models selfing selects for increased female allocation. For model 3 this contradicts the general opinion that geitonogamous selfing does not affect evolutionarily stable allocations. In all models, the parent benefits more from a female-biased allocation than any other individual in the population. In addition, in models 2 and 3, greater male allocation results in more local mate competition. In model 3 and in model 2 with low levels of inbreeding depression, hermaphroditism is evolutionarily stable. In model 2 with high inbreeding depression, the population converges to a fitness minimum for the relative allocation to male function. In this case the fitness set is bowed inwards, corresponding with accelerating fitness gain curves. If the selfing rate increases with plant size, this is a sufficient condition for size-dependent sex allocation (more allocation towards seeds in large plants) to evolve. We discuss our results in relation to size-dependent sex allocation in plants and in relation to the evolution of dioecy.  相似文献   

7.
Odour-guided behaviour is a quantitative trait determined by many genes that are sensitive to gene-environment interactions. Different natural populations are likely to experience different selection pressures on the genetic underpinnings of chemosensory behaviour. However, few studies have reported comparisons of the quantitative genetic basis of olfactory behaviour in geographically distinct populations. We generated isofemale lines of Drosophila melanogaster from six populations in Argentina and measured larval and adult responses to benzaldehyde. There was significant variation within populations for both larval and adult olfactory behaviour and a significant genotype x sex interaction (GSI) for adult olfactory behaviour. However, there is substantial variation in the contribution of GSI to the total phenotypic variance among populations. Estimates of evolvability are orders of magnitude higher for larvae than for adults. Our results suggest that the potential for evolutionary adaptation to the chemosensory environment is greater at the larval feeding stage than at the adult reproductive stage.  相似文献   

8.
9.
鹅掌楸的传粉环境与性配置   总被引:13,自引:3,他引:13  
近年来研究表明,动物传粉者对植物花部诱物特征(花冠形状大小,花蜜产量和花序大小)有潜在的选择作用。不同效率的传粉者可能导致植物性配置的变化,不同传粉效率的环境下,两性花植物鹅掌楸的花粉和胚珠的配置不同,居群Z在主要访花者是传粉效率较低的类的传粉环境下,花粉粒小,花粉数量相对较高;另一方面胚珠投资的减少,缓解了低效的传粉(增大授粉的几率),增加了受精的机会。相对而言,具有高效访花者的两个居群,资源较  相似文献   

10.
In the wing dimorphic sand cricket, Gryllus firmus, there is a pronounced trade-off between flight capability and fecundity. This trade-off is found both between morphs and within the macropterous morph, in which fecundity is negatively correlated with the mass of the principle flight muscles, the dorso-longitudinal muscles (DLM). In this paper, we examine how this trade-off is affected by a reduction in food and its genetic basis. We find that the relative fitness of the two wing morphs is not changed although both fecundity and DLM mass are decreased. A quantitative genetic analysis shows that the trade-off function is genetically variable but that most of the variation occurs in the intercept rather than the slope of the function. Analysis further indicates a very high genetic correlation between environments (food ration) supporting the hypothesis of a strong functional constraint between reproduction and flight capability.  相似文献   

11.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

12.
13.
Variation in the timing of reproductive functions in dioecious organisms may result in adaptive changes in the direction of sexual dimorphism during the breeding season. For plants in which both pollen and seeds are wind-dispersed, it may be advantageous for male plants to be taller when pollen is dispersed and female plants to be taller when seeds are dispersed. We examined the dynamics of height dimorphism in Rumex hastatulus, an annual, wind-pollinated, dioecious plant from the southern USA. A field survey of seven populations indicated that females were significantly taller than males at seed maturity. However, a glasshouse experiment revealed a more complex pattern of height growth during the life cycle. No dimorphism was evident prior to reproduction for six of seven populations, but at flowering, males were significantly taller than females in all populations. This pattern was reversed at reproductive maturity, consistent with field observations. Males flowered later than females and the degree of height dimorphism was greater in populations with a later onset of male flowering. We discuss the potential adaptive significance of temporal changes in height dimorphism for pollen and seed dispersal, and how this may be optimized for the contrasting reproductive functions of the sexes.  相似文献   

14.
Aims Sex allocation in plants is often plastic, enabling individuals to adjust to variable environments. However, the predicted male-biased sex allocation in response to low resource conditions has rarely been experimentally tested in hermaphroditic plants. In particular, it is unknown whether distal flowers in linear inflorescences show a larger shift to male allocation relative to basal flowers when resources are reduced. In this study, we measure position-dependent plasticity of floral sex allocation within racemes of Aconitum gymnandrum in response to reduced resource availability.Methods Using a defoliation treatment in the field applied to potted plants from a nested half-sibling design, we examined the effects of the treatment, flower position, family and their interactions.Important findings Allocation to male function increased with more distal flower position, while female allocation either did not change with position or declined at the most distal flowers. Defoliation significantly reduced the mass of both the androecium and gynoecium, but not anther number or carpel number. Gynoecial mass declined more strongly with defoliation than did androecial mass, resulting in a significant increase in the androecium/gynoecium ratio as predicted by sex allocation theory. Plastic responses of androecium mass and gynoecium mass were affected by flower position, with less mass lost in basal flowers, but similar plastic magnitude in both sexual traits across flower position lead to consistent variation in the androecium/gynoecium ratio along the inflorescence. A significant treatment*paternal family interaction for the androecium/gynoecium ratio is evidence for additive genetic variation for plastic floral sex allocation, which means that further evolution of allocation can occur.  相似文献   

15.
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE) and slope (RNS) of the breeding time reaction norm in a long‐term (1973–2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE, but not RNS, of egg‐laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between‐year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS. The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro‐evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima.  相似文献   

16.
徐申林  刘文哲 《植物生态学报》2011,35(12):1290-1299
 花序内性别表达和性别分配的差异在被子植物中非常普遍。常见的变化模式是: 在顺次开放的花序内, 从早开的花到晚开的花, 生殖结构大小和数量依次减少, 晚开的花偏向雄性。通常认为资源竞争和位置效应是形成这种差异的主要原因。在喜树(Camptotheca acuminata)的聚伞花序内, 早开的头状花序在花序直径、小花直径、短雄蕊长度、坐果率、果序重量等方面与晚开的头状花序差异显著。通过去除喜树聚伞花序一级或一级和二级头状花序来控制花序内的资源分配, 从而分析影
响喜树花序内花性状、性别分配及生殖能力的主要因子。结果显示, 去除部分头状花序后, 剩余头状花序的花序直径、小花直径明显增加, 短雄蕊长度明显缩短, 位置间差异消失; 而坐果率、果序重量的位置间差异依然显著。表明资源限制对花序直径、小花直径和短雄蕊长度等影响显著, 而坐果率和果序重量受位置效应影响明显。喜树雄全同株的性别分配可能是对特定生殖状况和资源状况适应的结果。  相似文献   

17.
Sex allocation theory addresses how separate sexes can evolve from hermaphroditism but little is known about the genetic potential for shifts in sex allocation in flowering plants. We tested assumptions of this theory using the common currency of biomass and measurements of narrow-sense heritabilities and genetic correlations in Schiedea salicaria, a gynodioecious species under selection for greater differentiation of the sexes. Female (carpel) biomass showed heritable variation in both sexes. Male (stamen) biomass in hermaphrodites also had significant heritability, suggesting the potential for further evolution of dioecy. Significant positive genetic correlations between females and hermaphrodites in carpel mass may slow differentiation between the sexes. Within hermaphrodites, there were no negative genetic correlations between male and female biomass as assumed by models for the evolution of dioecy, suggesting that S. salicaria is capable of further changes in biomass allocation to male and female functions and evolution toward dioecy.  相似文献   

18.
It has been proposed that relative allocation to female function increases with plant size in animalpollinated species.Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size-dependent sex allocation (SDS),throwing doubt on the generalization of SDS.Plant size,phenotypic gender,and flower production were measured in experimental populations of an aquatic,insect-pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities.The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors.In the high-density population,48% of ramets were male without female flowers,but in the low-density population all ramets were monoecious.We observed allometric growth in reproductive allocation with ramet size,as evident in biomass of reproductive structures and number of flowers.However,within both populations female and male flower production were isometric with ramet size,in contrast to an allometric growth in femaleness as predicted by SDS.Phenotypic gender was not related to ramet size in either population.The results indicated that large plants may increase both female and male function even in animal-pollinated plants,pointing towards further studies to test the hypothesis of size-dependent sex allocation using different allocation currencies.  相似文献   

19.
Field and greenhouse experiments were performed to measure genetic and environmental contributions to variation in the leaf mono- and sesquiterpenes of Heterotheca subaxillaris. Under greenhouse conditions, plants from a nitratevariable habitat (abandoned peach orchard) exhibit greater phenotypic variation in response to nitrate availability than plants from a continuously nitrate-poor environment (coastal sand dune). A genetic contribution to variation in volatile terpenes was measured only in the nitrate-variable orchard habitat. These results suggest that the magnitude of both genetic variation and phenotypic plasticity in volatile terpene production can differ between populations and may increase with greater environmental heterogeniety in the resources which affect terpene metabolism.  相似文献   

20.
Polyphenisms are evolved adaptations in which a genome produces discrete alternative phenotypes in different environments. In this study, the genetic basis of the evolution of a polyphenism by genetic accommodation was investigated. A polyphenic strain and a monophenic strain of Manduca sexta (L.) were crossed and the F(1) offspring and backcross progeny were analysed. The larval colour polyphenism was found to be regulated by one sex-linked gene of major effect and many smaller effect modifier genes. The finding shows that the mechanism of genetic accommodation relies on genetic changes that are consistent with the current view of the genetic basis of adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号