首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lineages that underwent rapid cladogenesis are attractive systems for the study of mechanisms underlying taxonomic, ecological, morphological, and behavioral diversification. Recently developed statistical methods provide insights into historical patterns of diversity and allow distinguishing bursts of cladogenesis from stochastic background rates in the presence of confounding factors such as extinction and incomplete taxon sampling. Here, we compare the dynamics of speciation in several marine fish lineages some of which were previously proposed to have undergone significant changes of cladogenesis through time. We tested for evidence of episodes of rapid cladogenesis using the constant rate and Monte Carlo constant rate tests that are robust to incomplete taxon sampling. These tests employ the statistic gamma to measure the relative position of internal node in a chronogram. For the first time, we conducted a comparative analysis to address the behavior of the statistic under different chronogram-constructing methods (Langley-Fitch, nonparametric rate smoothing, and penalized likelihood). Although estimates of gamma sometimes differ widely among methods, acceptance or rejection of the constant rate model within a particular clade appears to be robust to the choice of method. Bursts of cladogenesis were detected in 14 of 34 studied datasets. Some of these were previously proposed to represent marine fish "radiations," whereas others are identified anew. Our results indicate that the wider application of tree shape methods that are able to detect significantly elevated rates of speciation is useful to more precisely define clades that underwent episodes of rapid cladogenesis in marine fish clades. Contrasting the patterns of phylogenetic diversification in marine fish lineages may facilitate the identification of common evolutionary trajectories versus idiosyncrasies, and ultimately help towards a better understanding of the factors and processes underlying speciation in the marine realm.  相似文献   

2.
Gasteroid fungi include puffballs, stinkhorns, and other forms that produce their spores inside the fruiting body. Gasteroid taxa comprise about 8.4% of the Agaricomycetes (mushroom-forming fungi) and have evolved numerous times from nongasteroid ancestors, such as gilled mushrooms, polypores, and coral fungi, which produce spores on the surface of the fruiting body. Nongasteroid Agaricomycetes have a complex mechanism of forcible spore discharge that is lost in gasteroid lineages, making reversals to nongasteroid forms very unlikely. Our objective was to determine whether gasteromycetation affects the rate of diversification of lineages "trapped" in the gasteroid state. We assembled four datasets (the Sclerodermatineae, Boletales, Phallomycetidae, and Lycoperdaceae), representing unique origins of gasteroid fungi from nongasteroid ancestors and generated phylogenies using BEAST. Using the program Diversitree, we analyzed these phylogenies to estimate character-state-specific rates of speciation and extinction, and rates of transitions between nongasteroid and gasteroid forms. Most optimal models suggest that the net diversification rate of gasteroid forms exceeds that of nongasteroid forms, and that gasteroid forms will eventually come to predominate over nongasteroid forms in the clades in which they have arisen. The low frequency of gasteroid forms in the Agaricomycetes as a whole may reflect the recent origins of many gasteroid lineages.  相似文献   

3.
The vangas of Madagascar exhibit extreme diversity in morphology and ecology. Recent studies have shown that several other Malagasy species also are part of this endemic radiation, even as the monophyly of the clade remains in question. Using DNA sequences from 13 genes and representatives of all 15 vanga genera, we find strong support for the monophyly of the Malagasy vangids and their inclusion in a family along with six aberrant genera of shrike-like corvoids distributed in Asia and Africa. Biogeographic reconstructions of these lineages include both Asia and Africa as possible dispersal routes to Madagascar. To study patterns of speciation through time, we introduce a method that can accommodate phylogenetically non-random patterns of incomplete taxon sampling in diversification studies. We demonstrate that speciation rates in vangas decreased dramatically through time following the colonization of Madagascar. Foraging strategies of these birds show remarkable congruence with phylogenetic relationships, indicating that adaptations to feeding specializations played a role in the diversification of these birds. Vangas fit the model of an 'adaptive radiation' in that they show an explosive burst of speciation soon after colonization, increased diversification into novel niches and extraordinary ecomorphological diversity.  相似文献   

4.
The first analyses of gene sequence data indicated that the eukaryotic tree of life consisted of a long stem of microbial groups "topped" by a crown-containing plants, animals, and fungi and their microbial relatives. Although more recent multigene concatenated analyses have refined the relationships among the many branches of eukaryotes, the root of the eukaryotic tree of life has remained elusive. Inferring the root of extant eukaryotes is challenging because of the age of the group (~1.7-2.1 billion years old), tremendous heterogeneity in rates of evolution among lineages, and lack of obvious outgroups for many genes. Here, we reconstruct a rooted phylogeny of extant eukaryotes based on minimizing the number of duplications and losses among a collection of gene trees. This approach does not require outgroup sequences or assumptions of orthology among sequences. We also explore the impact of taxon and gene sampling and assess support for alternative hypotheses for the root. Using 20 gene trees from 84 diverse eukaryotic lineages, this approach recovers robust eukaryotic clades and reveals evidence for a eukaryotic root that lies between the Opisthokonta (animals, fungi and their microbial relatives) and all remaining eukaryotes.  相似文献   

5.
Species-level phylogenies derived from DNA sequence data provide a tool for estimating diversification rates and how these rates change over time, but to date there have been few empirical studies, particularly on insect groups. We use a densely sampled phylogenetic tree based on mitochondrial DNA to investigate diversification rates in the North American tiger beetles (genus Cicindela). Using node ages estimated from sequence data and calibrated by biogeographical evidence, we estimate an average per-lineage diversification rate of at least 0.22 +/- 0.08 species/Myr over the time interval since the most recent colonization that led to a radiation within the continent. In addition, we find evidence for a weak, recent increase in the net diversification rate. This is more consistent with a late Pleistocene increase in the speciation rate than with a constant rate of background extinction, but the results are sensitive to the dating method and taxon sampling. We discuss practical limitations to phylogenetic studies of diversification rates.  相似文献   

6.
The Cape Floristic Region is exceptionally species-rich both for its area and latitude, and this diversity is highly unevenly distributed among genera. The modern flora is hypothesized to result largely from recent (post-Oligocene) speciation, and it has long been speculated that particular species-poor lineages pre-date this burst of speciation. Here, we employ molecular phylogenetic data in combination with fossil calibrations to estimate the minimum duration of Cape occupation by 14 unrelated putative relicts. Estimates vary widely between lineages (7-101 Myr ago), and when compared with the estimated timing of onset of the modern flora's radiation, it is clear that many, but possibly not all, of these lineages pre-date its establishment. Statistical comparisons of diversities with lineage age show that low species diversity of many of the putative relicts results from a lower rate of diversification than in dated Cape radiations. In other putative relicts, however, we cannot reject the possibility that they diversify at the same underlying rate as the radiations, but have been present in the Cape for insufficient time to accumulate higher diversity. Although the extremes in diversity of currently dated Cape lineages fall outside expectations under a constant underlying diversification rate, sampling of all Cape lineages would be required to reject this null hypothesis.  相似文献   

7.
Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega‐phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species‐rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the ‘generalized diversification rate’ hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms.  相似文献   

8.
Estimation of diversification rates in evolutionary radiations requires a complete accounting of cryptic species diversity. The rapidly evolving songs of acoustically signaling insects make them good model organisms for such studies. This paper examines the timing of diversification of a large (30 taxon) group of New Zealand cicadas (genus Kikihia Dugdale). We use Bayesian relaxed-clock methods and phylogenetic trees based on nuclear and mitochondrial DNA data, and we apply alternative combinations of evolutionary rate priors and geological calibrations. The extant Kikihia taxa began to diversify near the Miocene/Pliocene boundary around the time of increased mountain-building, and both the mitochondrial and nuclear-gene trees confirm early splits of lineages currently represented by lowland forest-dwelling taxa. Most lineages originated in the Pleistocene, and sustained diversification occurred rapidly at over 0.5 lineages/my, a rate comparable to that of the Hawaiian silverswords. Diversification rate tests suggest an increase in the early to mid-Pliocene, followed by constant diversification from the Late Pliocene onward. No descendants of the many Pleistocene-age splits have evolved the ability to coexist in sympatry, and, where they do come into contact, hybrid zones have been documented based on acoustic and DNA evidence. In contrast, lineages separated in time by approximately 2Myr often overlap in distribution with no evidence of hybridization. This suggests that at least 2Myr has been required to achieve the level of divergence required for reproductive isolation.  相似文献   

9.
Testing macro-evolutionary models using incomplete molecular phylogenies.   总被引:12,自引:0,他引:12  
Phylogenies reconstructed from gene sequences can be used to investigate the tempo and mode of species diversification. Here we develop and use new statistical methods to infer past patterns of speciation and extinction from molecular phylogenies. Specifically, we test the null hypothesis that per-lineage speciation and extinction rates have remained constant through time. Rejection of this hypothesis may provide evidence for evolutionary events such as adaptive radiations or key adaptations. In contrast to previous approaches, our methods are robust to incomplete taxon sampling and are conservative with respect to extinction. Using simulation we investigate, first, the adverse effects of failing to take incomplete sampling into account and, second, the power and reliability of our tests. When applied to published phylogenies our tests suggest that, in some cases, speciation rates have decreased through time.  相似文献   

10.
Drawing inferences about macroevolutionary processes from phylogenetic trees is a fundamental challenge in evolutionary biology. Understanding stochastic models for speciation is an essential step in solving this challenge. We consider a neutral class of stochastic models for speciation, the constant rate birth-death process. For trees with n extant species - which might be derived from bigger trees via random taxon sampling - we calculate the expected time of the kth speciation event (k=1,...,n-1). Further, for a tree with n extant species, we calculate the density and expectation for the number of lineages at any time between the origin of the process and the present. With the developed methods, expected lineages-through-time (LTT) plots can be drawn analytically. The effect of random taxon sampling on LTT plots is discussed.  相似文献   

11.
Sexual selection may facilitate genetic isolation among populations and result in increased rates of diversification. As a mechanism driving diversification, sexual selection has been invoked and upheld in numerous empirical studies across disparate taxa, including birds, plants and spiders. In this study, we investigate the potential impact of sexual selection on the tempo and mode of ponyfish evolution. Ponyfishes (Leiognathidae) are bioluminescent marine fishes that exhibit sexually dimorphic features of their unique light-organ system (LOS). Although sexual selection is widely considered to be the driving force behind ponyfish speciation, this hypothesis has never been formally tested. Given that some leiognathid species have a sexually dimorphic LOS, whereas others do not, this family provides an excellent system within which to study the potential role of sexual selection in diversification and morphological differentiation. In this study, we estimate the phylogenetic relationships and divergence times for Leiognathidae, investigate the tempo and mode of ponyfish diversification, and explore morphological shape disparity among leiognathid clades. We recover strong support for a monophyletic Leiognathidae and estimate that all major ponyfish lineages evolved during the Paleogene. Our studies of ponyfish diversification demonstrate that there is no conclusive evidence that sexually dimorphic clades are significantly more species rich than nonsexually dimorphic lineages and that evidence is lacking to support any significant diversification rate increases within ponyfishes. Further, we detected a lineage-through-time signal indicating that ponyfishes have continuously diversified through time, which is in contrast to many recent diversification studies that identify lineage-through-time patterns that support mechanisms of density-dependent speciation. Additionally, there is no evidence of sexual selection hindering morphological diversity, as sexually dimorphic taxa are shown to be more disparate in overall shape morphology than nonsexually dimorphic taxa. Our results suggest that if sexual selection is occurring in ponyfish evolution, it is likely acting only as a genetic isolating mechanism that has allowed ponyfishes to continuously diversify over time, with no overall impact on increases in diversification rate or morphological disparity.  相似文献   

12.
Although theory predicts that dispersal has a pivotal influence on speciation and extinction rates, it can have contradictory effects on each, such that empirical quantification of its role is required. In many studies, dispersal reduction appears to promote diversification, although some comparisons of migratory and nonmigratory species suggest otherwise. We tested for a relationship between migratory status and diversification rate within the dominant radiation of temperate Southern Hemisphere freshwater fishes, the Galaxiidae. We reconstructed a molecular phylogeny comprising >95% of extant taxa, and applied State-dependent Speciation Extinction models to estimate speciation, extinction, and diversification rates. In contrast to some previous studies, we revealed higher diversification rates in nonmigratory lineages. The reduced gene flow experienced by nonmigratory galaxiids appears to have increased diversification under conditions of allopatry or local adaptation. Migratory galaxiid lineages, by contrast, are genetically homogeneous within landmasses, but may also be rarely able to diversify by colonizing other landmasses in the temperate Southern Hemisphere. Apparent contradictions among studies of dispersal-diversification relationships may be explained by the spatial context of study systems relative to species dispersal abilities, by means of the “intermediate dispersal” model; the accurate quantification of dispersal abilities will aid in the understanding of these proposed interactions.  相似文献   

13.
Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike''s Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different diversification rate models – ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models – on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear to be violated.  相似文献   

14.
The history of life has been marked by several spectacular radiations, in which many lineages arise over a short period of time. A possible consequence of such rapid splitting in the recent past is that the intrinsic barriers that prevent gene flow between many species may have too little time to develop fully, leading to extensive hybridization among recently evolved lineages. The salamander genus Plethodon in eastern North America has been proposed as a possible example of this scenario, but without explicit statistical tests. In this paper, we present a nearly comprehensive phylogeny for the 45 extant species of eastern Plethodon, based on DNA sequences of mitochondrial (two genes, 1335 base pairs) and nuclear genes (two genes, up to 3481 base pairs). We then use this phylogeny to examine rates and patterns of diversification and hybridization. We find significantly rapid diversification within the glutinosus species group. Examining patterns of natural hybridization in light of the phylogeny shows considerable hybridization within this clade, including introgression between species that are morphologically distinct and distantly related. Reproductive isolation increases over time and may be very weak among the most recently diverged species. These results suggest that the origin of species and the evolution of intrinsic reproductive isolating mechanisms, rather than being synonymous, may be decoupled in some cases (i.e., rapid origin of lineages outstrips the "speciation clock"). In contrast to the conclusions of a recent review of adaptive radiation and hybridization, we suggest that extensive hybridization sometimes may be a consequence, rather than a cause, of rapid diversification.  相似文献   

15.

Background

The extraordinary diversification of angiosperm plants in the Cretaceous and Tertiary periods has produced an estimated 250,000–300,000 living angiosperm species and has fundamentally altered terrestrial ecosystems. Interactions with animals as pollinators or seed dispersers have long been suspected as drivers of angiosperm diversification, yet empirical examples remain sparse or inconclusive. Seed dispersal by ants (myrmecochory) may drive diversification as it can reduce extinction by providing selective advantages to plants and can increase speciation by enhancing geographical isolation by extremely limited dispersal distances.

Methodology/Principal Findings

Using the most comprehensive sister-group comparison to date, we tested the hypothesis that myrmecochory leads to higher diversification rates in angiosperm plants. As predicted, diversification rates were substantially higher in ant-dispersed plants than in their non-myrmecochorous relatives. Data from 101 angiosperm lineages in 241 genera from all continents except Antarctica revealed that ant-dispersed lineages contained on average more than twice as many species as did their non-myrmecochorous sister groups. Contrasts in species diversity between sister groups demonstrated that diversification rates did not depend on seed dispersal mode in the sister group and were higher in myrmecochorous lineages in most biogeographic regions.

Conclusions/Significance

Myrmecochory, which has evolved independently at least 100 times in angiosperms and is estimated to be present in at least 77 families and 11 000 species, is a key evolutionary innovation and a globally important driver of plant diversity. Myrmecochory provides the best example to date for a consistent effect of any mutualism on large-scale diversification.  相似文献   

16.
A common pattern found in phylogeny-based empirical studies of diversification is a decrease in the rate of lineage accumulation toward the present. This early-burst pattern of cladogenesis is often interpreted as a signal of adaptive radiation or density-dependent processes of diversification. However, incomplete taxonomic sampling is also known to artifactually produce patterns of rapid initial diversification. The Monte Carlo constant rates (MCCR) test, based upon Pybus and Harvey's gamma (γ)-statistic, is commonly used to accommodate incomplete sampling, but this test assumes that missing taxa have been randomly pruned from the phylogeny. Here we use simulations to show that preferentially sampling disparate lineages within a clade can produce severely inflated type-I error rates of the MCCR test, especially when taxon sampling drops below 75%. We first propose two corrections for the standard MCCR test, the proportionally deeper splits that assumes missing taxa are more likely to be recently diverged, and the deepest splits only MCCR that assumes that all missing taxa are the youngest lineages in the clade, and assess their statistical properties. We then extend these two tests into a generalized form that allows the degree of nonrandom sampling (NRS)to be controlled by a scaling parameter, α. This generalized test is then applied to two recent studies. This new test allows systematists to account for nonrandom taxonomic sampling when assessing temporal patterns of lineage diversification in empirical trees. Given the dramatic affect NRS can have on the behavior of the MCCR test, we argue that evaluating the sensitivity of this test to NRS should become the norm when investigating patterns of cladogenesis in incompletely sampled phylogenies.  相似文献   

17.
18.
Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids’ host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation.  相似文献   

19.
The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. These results provide the first empirical evidence in support of the alternative theoretical prediction that asexual populations should instead diversify more rapidly than sexual populations because they are free from the homogenizing effects of sexual recombination and segregation. Although asexual reproduction may often constrain adaptive evolution, our results show that the loss of recombination and segregation need not be an evolutionary dead end in terms of diversification of lineages.  相似文献   

20.
Ancient lakes are often collectively viewed as evolutionary hot spots of diversification. East Africa's Lake Tanganyika has long been the subject of scientific interest owing to dramatic levels of endemism in species as diverse as cichlid fishes, paludomid gastropods, decapod and ostracod crustaceans and poriferans. It is the largest and deepest of the African rift lakes, and its endemic fauna has been presented with a stable inland environment for over 10 Myr, offering unique opportunities for within-lake diversification. Although astonishing diversification has been documented in the endemic cichlid fauna of the lake, similar patterns of rapid diversification have long been assumed for other groups. In contrast to this hypothesis of rapid speciation, we show here that there has been no acceleration in the rate of speciation in the thalassoid gastropods of the lake following lake colonization. While limited within-lake speciation has occurred, the dramatic conchological diversity of gastropods presently found within the lake has evolved from at least four major lineages that pre-date its formation by as much as 40 Myr. At the same time, a widespread group of African gastropods appears to have evolved from taxa presently found in the lake. While Lake Tanganyika has been a cradle of speciation for cichlid fishes, it has also been an important evolutionary reservoir of gastropod lineages that have been extirpated outside the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号