首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As HIV-1-encoded envelope protein traverses the secretory pathway, it may be modified with N- and O-linked carbohydrate. When the gp120s of HIV-1 NL4-3, HIV-1 YU2, HIV-1 Bal, HIV-1 JRFL, and HIV-1 JRCSF were expressed as secreted proteins, the threonine at consensus position 499 was found to be O-glycosylated. For SIVmac239, the corresponding threonine was also glycosylated when gp120 was recombinantly expressed. Similarly-positioned, highly-conserved threonines in the influenza A virus H1N1 HA1 and H5N1 HA1 envelope proteins were also found to carry O-glycans when expressed as secreted proteins. In all cases, the threonines were modified predominantly with disialylated core 1 glycans, together with related core 1 and core 2 structures. Secreted HIV-1 gp140 was modified to a lesser extent with mainly monosialylated core 1 O-glycans, suggesting that the ectodomain of the gp41 transmembrane component may limit the accessibility of Thr499 to glycosyltransferases. In striking contrast to these findings, gp120 on purified virions of HIV-1 Bal and SIV CP-MAC lacked any detectable O-glycosylation of the C-terminal threonine. Our results indicate the absence of O-linked carbohydrates on Thr499 as it exists on the surface of virions and suggest caution in the interpretation of analyses of post-translational modifications that utilize recombinant forms of envelope protein.  相似文献   

2.
Cytotoxic T-lymphocyte (CTL) responses against the external envelope glycoprotein (gp120) of the simian immunodeficiency virus (SIV) were studied in a rhesus macaque infected with SIVmac/239. CD8+ T cells enriched from concanavalin A-stimulated peripheral blood mononuclear cells lysed autologous target cells infected with recombinant vaccinia virus vectors expressing the SIVmac/239 or SIVsm/H4 envelope protein, which share approximately 80% identity in amino acid sequence. A CD8+ CTL line derived by limiting dilution culture of the concanavalin A-stimulated lymphocytes was also specific for the envelope proteins of both SIV isolates. Mapping studies revealed that this cell line recognized an epitope between amino acids 113 and 121 (CNKSETDRW) in the V1 domain of gp120. Amino acid substitutions are observed at positions 116 and 120 among viruses of the SIVsm/mac/human immunodeficiency virus type 2 group, and thus synthetic peptides representing these variants were tested for the ability to sensitize target cells for lysis by the CTL line. Autologous target cells sensitized with a synthetic peptide representing the SIVmac/239 sequence were efficiently killed. In contrast, recognition of target cells was reduced or abolished when peptides representing the amino acid substitutions at position 116 or 120 of other SIVmac, SIVsm, SIVmne, or SIVstm strains were tested. Further studies of CTL responses against this epitope could provide insights into mechanisms of variability within the gp120 V1 domain and its importance in evasion of immunity in infected or vaccinated monkeys.  相似文献   

3.
The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.  相似文献   

4.
A novel type of whole inactivated simian immunodeficiency virus (SIV) virion vaccine immunogen with functional envelope glycoproteins was evaluated, without adjuvant, in rhesus macaques. Immunogens included purified inactivated virions of SIVmac239, a designed mutant of SIVmac239 with gp120 carbohydrate attachment sites deleted (SIVmac239 g4,5), and SIVmneE11S. The vaccines were noninfectious, safe, and immunogenic, inducing antibody responses and cellular responses, including responses by CD8+ lymphocytes. Interpretation of protective efficacy following intrarectal challenge was complicated by incomplete take of the challenge in some SIV na?ve controls.  相似文献   

5.
Metastable conformations of the gp120 and gp41 envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) must be maintained in the unliganded state of the envelope glycoprotein trimer. Binding of gp120 to the primary receptor, CD4, triggers the transition to an open conformation of the trimer, promoting interaction with the CCR5 chemokine receptor and ultimately leading to gp41-mediated virus-cell membrane fusion and entry. Topological layers in the gp120 inner domain contribute to gp120-trimer association in the unliganded state and to CD4 binding. Here we describe similarities and differences between HIV-1 and SIVmac gp120. In both viruses, the gp120 N/C termini and the inner domain β-sandwich and layer 2 support the noncovalent association of gp120 with the envelope glycoprotein trimer. Layer 1 of the SIVmac gp120 inner domain contributes more to trimer association than the corresponding region of HIV-1 gp120. On the other hand, layer 1 plays an important role in stabilizing the CD4-bound conformation of HIV-1 but not SIVmac gp120 and thus contributes to HIV-1 binding to CD4. In SIVmac, CD4 binding is instead enhanced by tryptophan 375, which fills the Phe 43 cavity of gp120. Activation of SIVmac by soluble CD4 is dependent on tryptophan 375 and on layer 1 residues that determine a tight association of gp120 with the trimer. Distinct biological requirements for CD4 usage have resulted in lineage-specific differences in the HIV-1 and SIV gp120 structures that modulate trimer association and CD4 binding.  相似文献   

6.
Coding sequences for the first two variable loops of the gp120 envelope glycoprotein were removed from simian immunodeficiency virus (SIV) strain 239 (SIVmac239). This deletion encompassed 100 amino acids. The resulting virus replicated poorly after transfection into immortalized T-cell lines, with peak replication occurring only after 25 to 30 days. Limited passaging of SIVmac239DeltaV1V2 in cultures gave rise to a variant which had significantly improved replication kinetics but which retained the original 100-amino-acid deletion in gp120. Cloning and sequencing revealed 11 changes in the envelope, including amino acid substitutions in both gp120 (5 substitutions) and gp41(6 substitutions). Four of the five changes in gp120 are predicted to lie within and around the putative coreceptor binding domain, a region which is believed to be covered by the V1 and V2 loops in the native envelope complex. Analysis of recombinant clones surprisingly revealed that the changes in gp41 were sufficient to overcome the replication deficiency created by deletion of the V1 and V2 loops from gp120. The SIVmac239DeltaV1V2 envelope displayed a significant reduction in its ability to mediate cell-cell fusion, and the infectious titer of SIVmac239DeltaV1V2 was approximately four- to eightfold lower than that of parental SIVmac239. Although SIVmac239 is strongly dependent on both CD4 and a coreceptor for entry, envelope protein lacking the V1 and V2 loops was able to mediate fusion with CD4(-) CCR5(+) cells at 60% the level observed with CD4(+) CCR5(+) cells. Plasma from SIVmac239-infected monkeys was at least 100 to 1,000 times more effective at neutralizing SIVmac239DeltaV1V2 than SIVmac239. These results demonstrate the dispensability of the V1-V2 sequences of SIVmac239 for viral replication, a role for V1 and V2 in shielding the coreceptor binding region of the envelope, and the extreme sensitivity of a SIV lacking these sequences to antibody-mediated neutralization.  相似文献   

7.
Animal models greatly facilitate understanding of transmission, pathogenesis and immune responses in HIV and SIV infection and provide models for studies on the effect of candidate drugs or vaccines. However, there are several aspects that one should consider when drawing conclusions from results obtained from animal models. First, the genetic relationship of primate lentiviruses cannot be disregarded because it is known that HIV-1 is more closely related to SIV of chimpanzee origin (SIVcpz) than to SIV from sooty mangabey (SIVsm) origin. Nevertheless, SIVsm and SIVmac are the ones most often used as model systems. Second, there are differences in the biological properties, like CXCR4 use and CD4-independent coreceptor use, of HIV and SIV. These differences might be relevant in virus transmission, pathogenesis and in evoking immune responses. Third, in vivo and in vitro selection may influence the results. Neutralizing antibodies may play a role in selection of variant viruses since neutralization sensitive, CD4-independent SIVsm variants seemed to be suppressed in animals that mounted a neutralizing antibody response. It is tempting to speculate that neutralizing antibodies shape the SIV/HIV infection by selecting variants with a more "closed" envelope conformation with consequences for both receptor binding and neutralization sensitivity. The SIV/monkey model, although it has important advantages, may not answer all questions asked about HIV-1 infection in human.  相似文献   

8.
We previously described the pattern of sequence variation in gp120 following persistent infection of rhesus monkeys with the pathogenic simian immunodeficiency virus SIVmac239 molecular clone (D.P.W. Burns and R.C. Desrosiers, J. Virol. 65:1843, 1991). Sequence changes were confined largely to five variable regions (V1 to V5), four of which correspond to human immunodeficiency virus type 1 (HIV-1) gp120 variable regions. Remarkably, 182 of 186 nucleotide substitutions that were documented in these variable regions resulted in amino acid changes. This is an extremely nonrandom pattern, which suggests selective pressure driving amino acid changes in discrete variable domains. In the present study, we investigated whether neutralizing-antibody responses are one selective force responsible at least in part for the observed pattern of sequence variation. Variant env sequences called 1-12 and 8-22 obtained 69 and 93 weeks after infection of a rhesus monkey with cloned SIVmac239 were recombined into the parental SIVmac239 genome, and variant viruses were generated by transfection of cultured cells with cloned DNA. The 1-12 and 8-22 recombinants differ from the parental SIVmac239 at 18 amino acid positions in gp120 and at 5 and 10 amino acid positions, respectively, in gp41. Sequential sera from the monkey infected with cloned SIVmac239 from which the 1-12 and 8-22 variants were isolated showed much higher neutralizing antibody titers to cloned SIVmac239 than to the cloned 1-12 and 8-22 variants. For example, at 55 weeks postinfection the neutralizing antibody titer against SIVmac239 was 640 while those to the variant viruses were 40 and less than 20. Two other rhesus monkeys infected with cloned SIVmac239 showed a similar pattern. Rhesus monkeys were also experimentally infected with the cloned variants so that the type-specific nature of the neutralizing antibody responses could be verified. Indeed, each of these monkeys showed neutralizing-antibody responses of much higher titer to the homologous variant used for infection. These experiments unambiguously demonstrate that SIV mutants resistant to serum neutralization arise during the course of persistent infection of rhesus monkeys.  相似文献   

9.
To date, only a small number of anti-human immunodeficiency virus type 1 (HIV-1) monoclonal antibodies (MAbs) with relatively broad neutralizing activity have been isolated from infected individuals. Adequate techniques for defining how frequently antibodies of these specificities arise in HIV-infected people have been lacking, although it is generally assumed that such antibodies are rare. In order to create an epitope-specific neutralization assay, we introduced well-characterized HIV-1 epitopes into the heterologous context of simian immunodeficiency virus (SIV). Specifically, epitope recognition sequences for the 2F5, 4E10, and 447-52D anti-HIV-1 neutralizing monoclonal antibodies were introduced into the corresponding regions of SIVmac239 by site-directed mutagenesis. Variants with 2F5 or 4E10 recognition sequences in gp41 retained replication competence and were used for neutralization assays. The parental SIVmac239 and the neutralization-sensitive SIVmac316 were not neutralized by the 2F5 and 4E10 MAbs, nor were they neutralized significantly by any of the 96 HIV-1-positive human plasma samples that were tested. The SIV239-2F5 and SIV239-4E10 variants were specifically neutralized by the 2F5 and 4E10 MAbs, respectively, at concentrations within the range of what has been reported previously for HIV-1 primary isolates (J. M. Binley et al., J. Virol. 78:13232-13252, 2004). The SIV239-2F5 and SIV239-4E10 epitope-engrafted variants were used as biological screens for the presence of neutralizing activity of these specificities. None of the 92 HIV-1-positive human plasma samples that were tested exhibited significant neutralization of SIV239-2F5. One plasma sample exhibited >90% neutralization of SIV239-4E10, but this activity was not competed by a 4E10 target peptide and was not present in concentrated immunoglobulin G (IgG) or IgA fractions. We thus confirm by direct analysis that neutralizing activities of the 2F5 and 4E10 specificities are either rare among HIV-1-positive individuals or, if present, represent only a very small fraction of the total neutralizing activity in any given plasma sample. We further conclude that the structures of gp41 from SIVmac239 and HIV-1 are sufficiently similar such that epitopes engrafted into SIVmac239 can be readily recognized by the cognate anti-HIV-1 monoclonal antibodies.  相似文献   

10.
The V1 and V2 variable regions of the primate immunodeficiency viruses contribute to the trimer association domain of the gp120 exterior envelope glycoprotein. A pair of V2 cysteine residues at 183 and 191 (“twin cysteines”) is present in several simian immunodeficiency viruses, human immunodeficiency virus type 2 (HIV-2) and some SIVcpz lineages, but not in HIV-1. To examine the role of this potentially disulfide-bonded twin-cysteine motif, the cysteine residues in the SIVmac239 envelope glycoproteins were individually and pairwise substituted by alanine residues. All of the twin-cysteine mutants exhibited decreases in gp120 association with the Env trimer, membrane-fusing activity, and ability to support virus entry. Thus, the twin-cysteine motif plays a role in Env trimer stabilization in SIV and may do so in HIV-2 and some SIVcpz as well. This implies that HIV-1 lost the twin-cysteines, and may have relatively unstable Env trimers compared to SIV and HIV-2.  相似文献   

11.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) mac239 clone has been well characterized. Little is known, however, about the function of nef alleles derived from naturally SIVsm-infected sooty mangabeys (Cercocebus atys) and from human immunodeficiency virus type 2 (HIV-2)-infected individuals. Addressing this, we demonstrate that, similarly to the SIVmac239 nef, primary SIVsm and HIV-2 nef alleles down-modulate cell surface expression of human CD4, CD28, CD3, and class I or II major histocompatibility complex (MHC-I or MHC-II, respectively) molecules, up-regulate surface expression of the invariant chain (Ii) associated with immature MHC-II, inhibit early T-cell activation events, and enhance virion infectivity. Both also stimulate viral replication, although HIV-2 nef alleles were less active in this assay than SIVsm nef alleles. Mutational analysis showed that a dileucine-based sorting motif in the C-proximal loop of SIV or HIV-2 Nef is critical for its effects on CD4, CD28, and Ii but dispensable for down-regulation of CD3, MHC-I, and MHC-II. The C terminus of SIV and HIV-2 Nef was exclusively required for down-modulation of MHC-I, further demonstrating that analogous functions are mediated by different domains in Nef proteins derived from different groups of primate lentiviruses. Our results demonstrate that none of the eight Nef functions investigated had been newly acquired after cross-species transmission of SIVsm from naturally infected mangabeys to humans or macaques. Notably, HIV-2 and SIVsm nef alleles efficiently down-modulate CD3 and C28 surface expression and inhibit T-cell activation more efficiently than HIV-1 nef alleles. These differences in Nef function might contribute to the relatively low levels of immune activation observed in HIV-2-infected human individuals.  相似文献   

12.
Zhang C  de Silva S  Wang JH  Wu L 《PloS one》2012,7(5):e37477
Cross-species transmission and adaptation of simian immunodeficiency viruses (SIVs) to humans have given rise to human immunodeficiency viruses (HIVs). HIV type 1 (HIV-1) and type 2 (HIV-2) were derived from SIVs that infected chimpanzee (SIVcpz) and sooty mangabey (SIVsm), respectively. The HIV-1 restriction factor SAMHD1 inhibits HIV-1 infection in human myeloid cells and can be counteracted by the Vpx protein of HIV-2 and the SIVsm lineage. However, HIV-1 and its ancestor SIVcpz do not encode a Vpx protein and HIV-1 has not evolved a mechanism to overcome SAMHD1-mediated restriction. Here we show that the co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in SIVcpz and HIV-1. We found evidence for positive selection of SAMHD1 in orangutan, gibbon, rhesus macaque, and marmoset, but not in human, chimpanzee and gorilla that are natural hosts of Vpx-negative HIV-1, SIVcpz and SIVgor, respectively, indicating that vpx drives the evolution of primate SAMHD1. Ancestral host state reconstruction and temporal dynamic analyses suggest that the most recent common ancestor of SIVrcm, SIVmnd, SIVcpz, SIVgor and HIV-1 was a SIV that had a vpx gene; however, the vpx gene of SIVcpz was lost approximately 3643 to 2969 years ago during the infection of chimpanzees. Thus, HIV-1 could not inherit the lost vpx gene from its ancestor SIVcpz. The lack of Vpx in HIV-1 results in restricted infection in myeloid cells that are important for antiviral immunity, which could contribute to the AIDS pandemic by escaping the immune responses.  相似文献   

13.
The virus-encoded envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) typically contain 26 to 30 sites for N-linked carbohydrate attachment. N-linked carbohydrate can be of three major types: high mannose, complex, or hybrid. The lectin proteins from Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA), which specifically bind high-mannose carbohydrate, were found to potently inhibit the replication of a pathogenic cloned SIV from rhesus macaques, SIVmac239. Passage of SIVmac239 in the presence of escalating concentrations of GNA and HHA yielded a lectin-resistant virus population that uniformly eliminated three sites (of 26 total) for N-linked carbohydrate attachment (Asn-X-Ser or Asn-X-Thr) in the envelope protein. Two of these sites were in the gp120 surface subunit of the envelope protein (Asn244 and Asn460), and one site was in the envelope gp41 transmembrane protein (Asn625). Maximal resistance to GNA and HHA in a spreading infection was conferred to cloned variants that lacked all three sites in combination. Variant SIV gp120s exhibited dramatically decreased capacity for binding GNA compared to SIVmac239 gp120 in an enzyme-linked immunosorbent assay (ELISA). Purified gp120s from six independent HIV type 1 (HIV-1) isolates and two SIV isolates from chimpanzees (SIVcpz) consistently bound GNA in ELISA at 3- to 10-fold-higher levels than gp120s from five SIV isolates from rhesus macaques or sooty mangabeys (SIVmac/sm) and four HIV-2 isolates. Thus, our data indicate that characteristic high-mannose carbohydrate contents have been retained in the cross-species transmission lineages for SIVcpz-HIV-1 (high), SIVsm-SIVmac (low), and SIVsm-HIV-2 (low).The envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) are heavily glycosylated. N-linked carbohydrate is attached to the nascent protein at the asparagine of the consensus sequence N-X-S or N-X-T, where X is any amino acid except a proline (31, 52, 53). The number of potential N-linked carbohydrate attachment sites in the surface subunit of Env (gp120) ranges from 18 to 33, with a median of 25 (34, 65). There are typically 3 or 4 potential N-linked sites in the ectodomain of the Env transmembrane protein (gp41) (34).N-linked glycosylation of a protein consists of the en bloc transfer of the carbohydrate core oligosaccharide (two N-acetylglucosamines, nine mannoses, and three glucoses) from dolichol to the asparagine of the N-linked attachment site (8, 60). Initially the attached carbohydrate is processed into the high-mannose type (8). In the Golgi complex, high-mannose carbohydrate may be further processed into complex or hybrid oligosaccharides (58). Incomplete processing of N-linked carbohydrate results in the production of high-mannose carbohydrate chains, which terminate in mannose (58). Fully processed complex carbohydrate chains terminate in galactose, N-acetylglucosamine, sialic acid, or glucose (33, 57). Hybrid carbohydrate chains have two branches from the core, one that terminates in mannose and one that terminates in a sugar of the complex type (63).Glycoproteins exist as a heterogeneous population, exhibiting heterogeneity with respect to the proportion of potential glycosylation sites that are occupied and to the oligosaccharide structure observed at each site. Factors that influence the type of carbohydrate chain that is attached at any one N-linked site are the accessibility of the carbohydrate chain to processing enzymes (49), protein sequences surrounding the site (5, 40), and the type of cell from which the protein is produced (19).The N-linked carbohydrate chains of HIV and SIV Env are critical for the proper folding and cleavage of the fusion-competent envelope spike (20, 59, 61). After Env is assembled, enzymatic removal of N-linked carbohydrate does not dramatically affect the functional conformation (2, 6, 7, 13, 24, 38). It is generally accepted that the carbohydrate attached to Env limits the ability of the underlying protein to be recognized by B cells (11, 48, 62). This carbohydrate also shields protein epitopes that would otherwise be the direct targets of antibodies that neutralize viral infection (41, 48, 62, 64). Furthermore, the high-mannose carbohydrates of HIV and SIV Env bind dynamically to an array of lectin proteins that are part of the host lymphoreticular system. The interaction of viral high-mannose carbohydrate with host lectin proteins has been associated with the enhancement (9, 16, 17, 43-45) or suppression (42, 56) of viral infection of CD4-positive T cells. The high-mannose carbohydrate of Env is also known to activate the release of immune-modulatory proteins from a subset of host antigen-presenting cells (12, 54).The plant lectin proteins from Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA) specifically bind terminal α-1,3- and/or α-1,6-mannose of high-mannose oligosaccharides but not hybrid oligosaccharides (28, 55). GNA and HHA inhibit the replication of HIV-1 and SIVmac251, and uncloned, resistant populations of virus have been selected (3, 14). In this report, we define two N-linked sites in the external surface glycoprotein gp120 and one in the transmembrane glycoprotein gp41 whose mutation imparts high-level resistance to the inhibitory effects of GNA and HHA to cloned SIVmac239. Furthermore, using a GNA-binding enzyme-linked immunosorbent assay (ELISA), we show that assorted HIV-1 and SIVcpz gp120s consistently are considerably higher in mannose content than assorted gp120s from SIVmac, SIVsm, and HIV-2. These results shed new light on the impact of virus-host evolutionary dynamics on viral carbohydrate composition, and they may have important implications for the mechanisms by which long-standing natural hosts such as sooty mangabeys can resist generalized lymphoid activation and disease despite high levels of SIV replication.  相似文献   

14.
An antibody phage display library was constructed from RNA extracted from lymph node cells of a simian immunodeficiency virus (SIV)-infected long-term-nonprogressor macaque. Seven gp120-reactive Fabs were obtained by selection of the library against SIV monomeric gp120. Although each of the Fabs was unique in sequence, there were two distinct groups based on epitope recognition, neutralizing activity in vitro, and molecular analysis. Group 1 Fabs did not neutralize SIV and bound to a linear epitope in the V3 loop of the SIV envelope. In contrast, two of the group 2 Fabs neutralized homologous, neutralization-sensitive SIVsm isolates with high efficiency but failed to neutralize heterologous SIVmac isolates. Based on competition enzyme-linked immunosorbent assays with mouse monoclonal antibodies of known specificity, these Fabs reacted with a conformational epitope that includes domains V3 and V4 of the SIV envelope. These neutralizing and nonneutralizing Fabs provide valuable standardized and renewable reagents for studying the role of antibody in preventing or modifying SIV infection in vivo.  相似文献   

15.
Two of 25 healthy pet sooty mangabey (SM) monkeys (Cercocebus atys) living in West Africa were seropositive by immunoblot when surveyed for antibody to simian immunodeficiency virus of macaques (SIVmac). SIVsmLIB1 was isolated from one of the pet sooty mangabeys. Nucleotide sequence data showed that this isolate is a member of the SIVsm/human immunodeficiecy virus type 2 (HIV-2)/SIVmac group of primate lentiviruses. Furthermore, sequence comparisons revealed extensive genetic diversity among SIVsm isolates similar to that observed previously in SIV isolates from naturally infected African green monkeys. These observations provide additional evidence for monkey-human cross-species transmission of SIVsm as the source of HIV-2 infection of human.  相似文献   

16.
Simian immunodeficiency virus (SIV) of macaques isolate SIVmac239 is highly resistant to neutralization by polyclonal antisera or monoclonal antibodies, a property that it shares with most primary isolates of human immunodeficiency virus type 1 (HIV-1). This resistance is important for the ability of the virus to persist at high levels in vivo. To explore the physical features of the viral envelope complex that contribute to the neutralization-resistant phenotype, we examined a panel of SIVmac239 derivatives for sensitivity to neutralization by a large collection of monoclonal antibodies (MAbs). These MAbs recognize both linear and conformational epitopes throughout the viral envelope proteins. The variant viruses included three derivatives of SIVmac239 with substitutions in specific N-linked glycosylation sites of gp120 and a fourth variant that lacked the 100 amino acids that encompass the V1 and V2 loops. Also included in this study was SIVmac316, a variant of SIVmac239 with distributed mutations in env that confer significantly increased replicative capacity in tissue macrophages. These viruses were chosen to represent a broad range of neutralization sensitivities based on susceptibility to pooled, SIV-positive plasma. All three of these very different kinds of mutations (amino acid substitutions, elimination of N-glycan attachment sites, and a 100-amino-acid deletion spanning variable loops V1 and V2) dramatically increased sensitivity to neutralization by MAbs from multiple competition groups. Thus, the mutations did not simply expose localized epitopes but rather conferred global increases in neutralization sensitivity. The removal of specific N-glycan attachment sites from V1 and V2 led to increased sensitivity to neutralization by antibodies recognizing epitopes from both within and outside of the V1-V2 sequence. Surprisingly, while most of the mutations that gave rise to increased sensitivity were located in the N-terminal half of gp120 (surface subunit [SU]), the greatest increases in sensitivity were to MAbs recognizing the C-terminal half of gp120 or the ectodomain of gp41 (transmembrane subunit [TM]). This reagent set and information should now be useful for defining the physical, structural, thermodynamic, and kinetic factors that influence relative sensitivity to antibody-mediated neutralization.  相似文献   

17.
Retrospective molecular epidemiology was performed on samples from four sooty mangabey (SM) colonies in the United States to characterize simian immunodeficiency virus SIVsm diversity in SMs and to trace virus circulation among different primate centers (PCs) over the past 30 years. The following SIVsm sequences were collected from different monkeys: 55 SIVsm isolates from the Tulane PC sampled between 1984 and 2004, 10 SIVsm isolates from the Yerkes PC sampled in 2002, 7 SIVsm isolates from the New Iberia PC sampled between 1979 and 1986, and 8 SIVsm isolates from the California PC sampled between 1975 and 1977. PCR and sequencing were done to characterize the gag, pol, and env gp36 genes. Phylogenetic analyses were correlated with the epidemiological data. Our analysis identified nine different divergent phylogenetic lineages that cocirculated in these four SM colonies in the Unites States in the past 30 years. Lineages 1 to 5 have been identified previously. Two of the newly identified SIVsm lineages found in SMs are ancestral to SIVmac251/SIVmac239/SIVmne and SIVstm. We further identified the origin of these two macaque viruses in SMs from the California National Primate Research Center. The diversity of SIVsm isolates in PCs in the United States mirrors that of human immunodeficiency virus type 1 (HIV-1) group M subtypes and offers a model for the molecular epidemiology of HIV and a new approach to vaccine testing. The cocirculation of divergent SIVsm strains in PCs resulted in founder effects, superinfections, and recombinations. This large array of SIVsm strains showing the same magnitude of diversity as HIV-1 group M subtypes should be extremely useful for modeling the efficacy of vaccination strategies under the real-world conditions of HIV-1 diversity. The genetic variability of SIVsm strains among PCs may influence the diagnosis and monitoring of SIVsm infection and, consequently, may bias the results of pathogenesis studies.  相似文献   

18.
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.  相似文献   

19.
For testing of recombinant virus-like particles (VLPs) in the SHIV monkey model, SIVmac239 Pr56gag precursor-based pseudovirions were modified by HIV-1 gp160 derived peptides. First, well-characterized epitopes from the HIV-1 envelope glycoprotein were inserted into the Pr56gag precursor by replacing defined regions that were shown to be dispensable for virus particle formation. Expression of these chimeric proteins in a baculovirus expression system resulted in efficient assembly and release of non-infectious, hybrid VLPs. In a second approach the HIV-1IIIB external glycoprotein gp120 was covalently linked to an Epstein-Barr virus derived transmembrane domain. Coexpression of the hybrid envelope derivative with the Pr56gag precursor yielded recombinant SIV derived Pr56gag particles with the HIV-1 gp120 firmly anchored on the VLP surface. Immunization of rhesus monkeys with either naked VLPs or VLPs adsorbed to alum induced substantial serum antibody titers and promoted both T helper cell and cytotoxic T lymphocyte responses. Furthermore, priming macaques with the corresponding set of recombinant Semliki-Forest viruses tended to enhance the immunological outcome. Challenge of the immunized monkeys with chimeric SHIV resulted in a clearly accelerated reduction of the plasma viremia as compared to control animals.  相似文献   

20.
Extensive glycosylation of the envelope spikes of human and simian immunodeficiency virus (HIV and SIV) is an important factor for the resistance of these viruses to neutralization by antibodies. SIVmac239 gp41 has three closely spaced sites for N-linked carbohydrate attachment. Rhesus macaques experimentally infected with mutant versions of SIVmac239 lacking two or three of these carbohydrate sites developed strong serum reactivity against mutated peptide sequences at the site of these glycosylations, as well as high titers of neutralizing activity to the mutant viruses (E. Yuste et al., J. Virol. 82:12472–12486, 2008). However, whether antibodies that recognize these underlying peptides have neutralizing activity has not been directly demonstrated. Here we describe the isolation and characterization of three gp41-specific monoclonal antibodies (4G8, 6G8, and 7D6) from one of these mutant-infected monkeys. All three antibodies reacted with mutant gp41 from viral particles and also with peptides corresponding to mutated sequences. Slight differences in peptide specificities were observed among the three antibodies. Sequence analysis revealed that the heavy chains of all three antibodies were derived from the same germ line heavy-chain segment (IGHV4-59*01), but they all had very different sequences in complementarity-determining region 3. The light chains of all three antibodies were very closely related to one another. All three antibodies had neutralizing activity to mutant viruses deficient in gp41 carbohydrate attachment, but they did not neutralize the parental SIVmac239. These results demonstrate unambiguously that antibodies with specificity for peptide sequences underlying gp41 carbohydrates can effectively neutralize SIV when these carbohydrates are absent. However, the presence of these gp41 carbohydrates effectively shields the virus from antibodies that would otherwise neutralize viral infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号