首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of calcium transport in microsomes and the effect of inositol 1,4,5-trisphosphate (IP3) on accumulated calcium were studied in rat thymocytes. Active calcium transport shows an apparent affinity constant for calcium of 0.2 +/- 0.01 microM and a maximal velocity of 2.3 +/- 0.6 nmol/mg/30 min (mean +/- SD). IP3 was able to induce release of calcium only in the absence of oxalate. At 6 microM ambient free calcium, half-maximal effect of IP3 was attained at 2 microM and maximal calcium release was produced by IP3 concentrations over 5 microM. Barium and strontium did not modify calcium uptake by microsomes but markedly inhibited the action of IP3.  相似文献   

2.
Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic smooth muscle sarcoplasmic reticulum vesicles was examined using the calcium indicator antipyrylazo III. Calcium release was initiated by addition of inositol 1,4,5-trisphosphate (IP3) to aortic vesicles 7 min after initiation of ATP-supported calcium uptake. Half-maximal calcium release occurred at 1 microM IP3, with maximal calcium release amounting to 25 +/- 2% of the intravesicular calcium (n = 12, 9 preparations). Ruthenium red (10-20 microM), which has been reported to block IP3-induced calcium release from skeletal muscle sarcoplasmic reticulum, did not inhibit aortic IP3-induced calcium release. Elevation of Mg2+ concentration from 0.06 to 7.8 mM inhibited aortic IP3-induced calcium release 75%, which contrasts with the Mg2+-insensitive IP3-induced calcium release from platelet reticular membranes. The IP3-dependence of aortic calcium release suggested that Mg2+ acted as a noncompetitive inhibitor. Thus, aortic sarcoplasmic reticulum vesicles contain an IP3-sensitive calcium pathway which is inhibited by millimolar concentrations of Mg2+, but which is not inhibited by Ruthenium red and so differs from the previously described IP3-sensitive calcium pathways in skeletal muscle and platelet reticular membranes.  相似文献   

3.
The effects of thrombin and GTP gamma S on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous [3H]inositol-labeled membranes or with lipid vesicles containing either [3H]phosphatidylinositol or [3H]phosphatidylinositol 4,5-bisphosphate. GTP gamma S (1 microM) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP3), inositol bisphosphate (IP2), or inositol phosphate (IP) from [3H]inositol-labeled membranes. IP2 and IP3, but not IP, from [3H]inositol-labeled membranes were, however, stimulated 3-fold by GTP gamma S (1 microM) plus thrombin (1 unit/mL). A higher concentration of GTP gamma S (100 microM) alone also stimulated IP2 and IP3, but not IP, release. In the presence of 1 mM calcium, release of IP2 and IP3 was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP2) by platelet membrane associated PLC was also markedly enhanced by GTP gamma S (100 microM) or GTP gamma S (1 microM) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP2 was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTP gamma S (100 microM) or calcium (1 mM) dependent PIP2 breakdown, while TPA inhibited GTP gamma S-dependent but not calcium-dependent phospholipase C activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To clarify the biological role of phosphoinositides including inositol trisphosphate (IP3) in the skeletal muscle, we examined the Ca-releasing action on the heavy fraction of sarcoplasmic reticulum (HFSR) from bullfrog skeletal muscle of IP3, phosphatidylinositol monophosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and glycerophosphoinositol 4,5-bisphosphate (GPIP2). Only PIP2 caused dose-dependent Ca release. IP3 (up to 55 microM), PIP (up to 37 microM), and GPIP2 (up to 33 microM) were ineffective. The PIP2-induced Ca release is due to the direct action of PIP2, but not its metabolite(s). The properties of the PIP2-induced Ca release are unique and cannot be accounted for by the Ca release mechanisms already reported, such as Ca2+-induced, ionic substitution-induced, or IP3-induced Ca release. The rate of the PIP2-induced Ca release, however, is so slow that it may have no physiological relevance unless stimulating factors or agents exist.  相似文献   

5.
We report here that the inositol 1,4,5-trisphosphate (IP3) precursor, L-alpha-phosphatidylinositol 4,5-bisphosphate (PIP2) is a potent molecule (1 microM) which activates the ryanodine-sensitive Ca2+ release channel from rabbit skeletal muscle terminal cisternae incorporated into a phospholipid bilayer. It also stimulates Ca2+ release from these membrane vesicles. Therefore, it may play a modulating role in excitation-contraction coupling. In the bilayer, PIP2 added on the cytoplasmic side increased the mean channel opening probability 2-12-fold in the presence and absence of physiological Mg2+ and ATP. From flux studies, PIP2-induced Ca2+ release, occurring through the ryanodine-sensitive Ca2+ release channel, displayed saturation kinetics. The rate of Ca2+ release induced by PIP2 was approximately greater than 50% slower than the rates induced by other agents (e.g. caffeine, Ca2+, ATP). PIP2, and not IP3, effectively elicited Ca2+ release from terminal cisternae. On the contrary, IP3, and not PIP2, specifically mediated Ca2+ release from dog brain cerebellum microsomes, where IP3 receptors are known to be found. The PIP2-induced Ca2+ release from muscle membranes was not dependent on medium [Ca2+] (from less than 10(-9) to approximately 10(-4) M). However, IP3 could activate the terminal cisternae Ca2+ channel in the bilayer when there was low Ca2+ (less than 10(-7) M). The data suggest that the ionic microenvironment around the Ca2+ channel may be different for observing the two phosphoinositide actions.  相似文献   

6.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

7.
Calmodulin inhibits inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor in both a Ca2+-dependent and a Ca2+-independent way. Because there are no functional data on the modulation of the IP3-induced Ca2+ release by calmodulin at various Ca2+ concentrations, we have studied how cytosolic Ca2+ and Sr2+ interfere with the effects of calmodulin on the IP3-induced Ca2+ release in permeabilized A7r5 cells. We now report that calmodulin inhibited Ca2+ release through the IP3 receptor with an IC50 of 4.6 microM if the cytosolic Ca2+ concentration was 0.3 microM or higher. This inhibition was particularly pronounced at low IP3 concentrations. In contrast, calmodulin did not affect IP3-induced Ca2+ release if the cytosolic Ca2+ concentration was below 0.3 microM. Calmodulin also inhibited Ca2+ release through the IP3 receptor in the presence of at least 10 microM Sr2+. We conclude that cytosolic Ca2+ or Sr2+ are absolutely required for the calmodulin-induced inhibition of the IP3-induced Ca2+ release and that this dependence represents the formation of the Ca2+/calmodulin or Sr2+/calmodulin complex.  相似文献   

8.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

9.
A 3D model was developed and used to explore dynamics of phosphatidylinositol-4,5-bisphosphate (PIP2) signaling in cerebellar Purkinje neurons. Long-term depression in Purkinje neurons depends on coincidence detection of climbing fiber stimulus evoking extracellular calcium flux into the cell and parallel fiber stimulus evoking inositol-1,4,5-trisphosphate (IP3)-meditated calcium release from the endoplasmic reticulum. Experimental evidence shows that large concentrations of IP3 are required for calcium release. This study uses computational analysis to explore how the Purkinje cell provides sufficient PIP2 to produce large amounts of IP3. Results indicate that baseline PIP2 concentration levels in the plasma membrane are inadequate, even if the model allows for PIP2 replenishment by lateral diffusion from neighboring dendrite membrane. Lateral diffusion analysis indicates apparent anomalous diffusion of PIP2 in the spiny dendrite membrane, due to restricted diffusion through spine necks. Stimulated PIP2 synthesis and elevated spine PIP2 mediated by a local sequestering protein were explored as candidate mechanisms to supply sufficient PIP2. Stimulated synthesis can indeed lead to high IP3 amplitude of long duration; local sequestration produces high IP3 amplitude, but of short duration. Simulation results indicate that local sequestration could explain the experimentally observed finely tuned timing between parallel fiber and climbing fiber activation.  相似文献   

10.
The mechanisms of H2O2-induced Ca2+ release from intracellular stores were investigated in human umbilical vein endothelial cells. It was found that U73122, the selective inhibitor of phospholipase C, could not inhibit the H2O2-induced cytosolic Ca2+ mobilization. No elevation of inositol 1,4,5-trisphosphate (IP3) was detected in cells exposed to H2O2. By loading mag-Fura-2, a Ca2+ indicator, into intracellular store, the H2O2-induced Ca2+ release from intracellular calcium store was directly observed in the permeabilized cells in a dose-dependent manner. This release can be completely blocked by heparin, a well-known antagonist of IP3 receptor, indicating a direct activation of IP3 receptor on endoplasmic reticulum (ER) membrane by H2O2. It was also found that H2O2 could still induce a relatively small Ca2+ release from internal stores after the Ca2+-ATPase on ER membrane and the Ca2+ uptake to mitochondria were simultaneously inhibited by thapsigargin and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The later observation suggests that a thapsigargin-insensitive non-mitochondrial intracellular Ca2+ store might be also involved in H2O2-induced Ca2+ mobilization.  相似文献   

11.
Human platelet plasma membranes incubated in the presence of [gamma-32P]ATP and 15 mM MgCl2 incorporated radioactivity mostly into phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP), which represented together over 90% of the total lipid radioactivity. After washing, reincubation of prelabelled membranes revealed some hydrolysis of the two compounds by phosphomonoesterase(s), as detected by the release of radioactive inorganic phosphate (Pi) from the two phospholipids. This degradation attained 40%/30 min for PIP in the presence of 2 mM calcium and cytosol. The effect of calcium was observed at concentrations equal to or greater than 10(-4) M. In no case did calcium alone facilitate the formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate (IP2). In contrast, simultaneous addition of 2 mM calcium and 2 mg/ml sodium deoxycholate promoted the formation of IP3 and IP2, indicating phosphodiesteratic cleavage of PIP2 and PIP. Phospholipase C activity was detected at calcium concentrations as low as 10(-7) M, in which case PIP2 hydrolysis was slightly more pronounced compared to PIP. Addition of cytosol increased to some extent the phospholipase C activity, suggesting that the low amount of enzyme remaining in the membrane is sufficient to promote submaximal degradation of PIP2 and PIP. We conclude that platelet polyphosphoinositides are present in the plasma membrane in a state where they remain inaccessible to phospholipase C, which is still fully active even at basal calcium concentrations, i.e., 10(-7) M. These results support the view that phosphodiesteratic cleavage of PIP2 promotes and thus precedes calcium mobilization brought about by IP3. The in vitro model presented here may prove very useful in future studies dealing with the mechanism rendering polyphosphoinositides accessible to phospholipase C attack upon agonist-receptor binding.  相似文献   

12.
The effect of the guanine nucleotide GTP on Ca2+ release from the endoplasmic reticulum of digitonin-permeabilized islets was investigated. maximal and half-maximal Ca2+ release were observed at 5 microM- and 2.5 microM-GTP respectively. GTP caused a rapid release of Ca2+ from the endoplasmic reticulum, which was complete within 1 min. GTP-induced Ca2+ release was structurally specific and required the hydrolysis of GTP. The combination of maximal concentrations of GTP (10 microM) and myo-inositol 1,4,5-trisphosphate (IP3) (10 microM) resulted in an additive effect on Ca2+ release from the endoplasmic reticulum. GDP (100 microM), which inhibits GTP-induced Ca2+ release, did not affect IP3-induced Ca2+ release. Furthermore, GTP-induced Ca2+ release was not independent on submicromolar free Ca2+ concentrations, unlike IP3-induced Ca2+ release. These observations suggest that mechanistically GTP-induced Ca2+ release is different from IP3-induced Ca2+ release from the endoplasmic reticulum.  相似文献   

13.
The experiments reported here were designed to answer the question of whether inositol 1,4,5-trisphosphate (IP3)-induced calcium release is necessary for generating the entire light response of Limulus ventral photoreceptors. For this purpose the membrane-permeable IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2APB) (Maruyama, T., T. Kanaji, S. Nakade, T. Kanno, and K. Mikoshiba. 1997. J. Biochem. (Tokyo). 122:498-505) was used. Previously, 2APB was found to inhibit the light activated current of Limulus ventral photoreceptors and reversibly inhibit both light and IP3 induced calcium release as well as the current activated by pressure injection of calcium into the light sensitive lobe of the photoreceptor (Wang, Y., M. Deshpande, and R. Payne. 2002. Cell Calcium. 32:209). In this study 2APB was found to inhibit the response to a flash of light at all light intensities and to inhibit the entire light response to a step of light, that is, both the initial transient and the steady-state components of the response to a step of light were inhibited. The light response in cells injected with the calcium buffer 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) was reversibly inhibited by 2APB, indicating that these light responses result from IP3-mediated calcium release giving rise to an increase in Cai. The light response obtained from cells after treatment with 100 microM cyclopiazonic acid (CPA), which acts to empty intracellular calcium stores, was reversibly inhibited by 2APB, indicating that the light response after CPA treatment results from IP3-mediated calcium release and a consequent rise in Cai. Together these findings imply that IP3-induced calcium release is necessary for generating the entire light response of Limulus ventral photoreceptors.  相似文献   

14.
M H Cho  Z Tan  C Erneux  S B Shears    W F Boss 《Plant physiology》1995,107(3):845-856
When [3H]inositol-labeled carrot (Daucus carota L.) cells were treated with 10 or 25 microM wasp venom peptide mastoparan or the active analog Mas-7 there was a rapid loss of more than 70% of [3H]phosphatidylinositol-4-monophosphate (PIP) and [3H]phosphatidylinositol-4,5-bisphosphate (PIP2) and a 3- and 4-fold increase in [3H]inositol-1,4-P2 and [3H]inositol-1,4,5-P3, respectively. The identity of [3H]inositol-1,4,5-P3 was confirmed by phosphorylation with inositol-1,4,5-P3 3-kinase and co-migration with inositol-1,3,4,5-P4. The changes in phosphoinositides were evident within 1 min. The loss of [3H]PIP was evident only when cells were treated with the higher concentrations (10 and 25 microM) of mastoparan or Mas-7. At 1 microM Mas-7, [3H]PIP increased. The inactive mastoparan analog Mas-17 had little or no effect on [3H]PIP or [3H]PIP2 hydrolysis in vivo. Neomycin (100 microM) inhibited the uptake of Mas-7 and thereby inhibited the Mas-7-stimulated hydrolysis of [3H]PIP and [3H]PIP2. Plasma membranes isolated from mastoparan-treated cells had increased PIP-phospholipase C (PLC) activity. However, when Mas-7 was added to isolated plasma membranes from control cells, it had no effect on PIP-PLC activity at low concentrations and inhibited PIP-PLC at concentrations greater than 10 microM. In addition, guanosine-5'-O-(3-thiotriphosphate) had no effect on the PIP-PLC activity when added to plasma membranes isolated from either the Mas-7-treated or control cells. The fact that Mas-7 did not stimulate PIP-PLC activity in vitro indicated that the Mas-7-induced increase in PIP-PLC in vivo required a factor that was lost from the membrane during isolation.  相似文献   

15.
Previous studies have demonstrated that myo-inositol 1,4,5-trisphosphate (IP3) mobilizes Ca2+ from the endoplasmic reticulum (ER) of digitonin-permeabilized islets and that an increase in intracellular free Ca2+ stimulates insulin release. Furthermore, glucose stimulates arachidonic acid metabolism in islets. In digitonin-permeabilized islets, exogenous arachidonic acid at concentrations between 1.25 to 10 microM elicited significant Ca2+ release from the ER at a free Ca2+ concentration of 0.1 microM. Arachidonic acid-induced Ca2+ release was not due to the metabolites of arachidonic acid. Arachidonic acid induced a rapid release of Ca2+ within 2 min. Comparison of arachidonic acid-induced Ca2+ release with IP3-induced Ca2+ release revealed a similar molar potency of arachidonic acid and IP3. The combination of both arachidonic acid and IP3 resulted in a greater effect on Ca2+ mobilization from the ER than either compound alone. The mass of endogenous arachidonic acid released by islets incubated with 28 mM glucose was measured by mass spectrometric methods and was found to be sufficient to achieve arachidonic acid concentrations equal to or exceeding those required to induce release of Ca2+ sequestered in the ER. These observations indicate that glucose-induced arachidonic acid release could participate in glucose-induced Ca2+ mobilization and insulin secretion by pancreatic islets, possibly in cooperation with IP3.  相似文献   

16.
The intracellular nonmitochondrial calcium pools of saponin-permeabilized NG108-15 cells were characterized using inositol 1,4,5-trisphosphate (IP3) and GTP. IP3 or GTP alone induced release of 47 and 68%, respectively, of the calcium that was releasable by A23187. GTP induced release of a further 24% of the calcium after IP3 treatment, whereas IP3 induced release of a further 11% of the calcium after GTP treatment. Guanosine 5'-O-(3-thio)triphosphate had little effect on IP3-induced calcium release but completely inhibited GTP-induced calcium release. In contrast, heparin inhibited the action of IP3 but not that of GTP. The results imply the existence of at least three nonmitochondrial pools: (a) 31% is releasable by IP3 and GTP, (b) 11% is releasable by IP3 alone, and (c) 24% is releasable by GTP alone. GTP enhanced calcium uptake in the presence of oxalate with an EC50 of 0.6 microM and stimulated calcium release in the absence of oxalate with an EC50 of 0.32 microM. The similar EC50 values for these dual effects of GTP on calcium movement suggest that GTP exerts its dual action by the same mechanism.  相似文献   

17.
The effect of inositol 1,4,5-trisphosphate (IP3) on Ca2+ release from microsomes of corn coleoptiles was investigated. Addition of micromolar concentrations of IP3 to Ca2+ loaded microsomes resulted in rapid release of 20-30% of sequestered Ca2+. Maximal and half maximal Ca2+ release occurred at 20 and 8 microM of IP3 respectively. Part of the Ca2+ released by IP3 was reaccumulated into microsomes within 4 min. The amount of Ca2+ released by IP3 was found to be dependent on free Ca2+ concentration in the incubation medium at the time of release. Maximum Ca2+ release was observed around 0.1 microM free Ca2+ concentration in the assay medium. These data suggest that IP3 might act as a second messenger in plants in a manner similar to animal systems by altering cytosolic levels of calcium.  相似文献   

18.
To investigate the role of the src homology 2 (SH2)-containing inositol 5' phosphatase (SHIP) in growth factor-mediated signalling, we compared Steel factor (SF)-induced events in bone marrow-derived mast cells (BMMCs) from SHIP-/- and SHIP+/+ littermates. We found SF alone stimulated massive degranulation from SHIP-/- but none from SHIP+/+ BMMCs. This SF-induced degranulation, which was not due to higher c-kit levels in SHIP-/- cells, correlated with higher intracellular calcium than that in SHIP+/+ cells and was dependent on the influx of extracellular calcium. Both this influx and subsequent degranulation were completely inhibited by PI-3-kinase inhibitors, indicating that SF-induced activation of PI-3-kinase was upstream of extracellular calcium entry. A comparison of phosphatidylinositol-3,4,5-trisphosphate (PIP3) levels following SF stimulation of SHIP+/+ and SHIP-/- BMMCs suggested that SHIP restricted this entry by hydrolyzing PIP3. Although PI-3-kinase inhibitors blocked the release of intracellular calcium, implicating PIP3, and PLCgamma-2 was slightly more tyrosine phosphorylated in SHIP-/- cells, the increase in inositol-1,4,5-trisphosphate (IP3) and intracellular calcium levels were identical in SHIP-/- and SHIP+/+ BMMCs. These results suggest that SHIP prevents SF from triggering degranulation of normal BMMCs, and does so by hydrolyzing PIP3, which in turn limits extracellular calcium entry at a step after the release of intracellular calcium.  相似文献   

19.
Myoinositol trisphosphate (IP3) is formed when phosphatidylinositol 4,5-bisphosphate (PIP2) is hydrolyzed by phospholipase C. At micromolar concentrations, IP3 is a stimulus for Ca2+ release in both platelet membranes and various permeabilized cells. We have utilized a combination of ion exchange and capillary gas chromatography to quantitate the mass of IP3 produced by human platelets stimulated by thrombin. Accumulations of IP3 are transient and detectable within 5 s of exposure to thrombin. Within 15 s, thrombin (1 unit/ml) promotes the formation of 134 pmol of IP3/10(9) platelets, the equivalent of an intracellular concentration of 13.4 microM. Incubation of platelets with a stimulus for protein kinase C, 12-O-tetradecanoyl phorbol 13-acetate, prior to the addition of thrombin impairs the hydrolysis of PIP2 and the increase in IP3, with 50% inhibition occurring at 60 nM TPA. We conclude that platelets produce sufficient quantities of IP3 to cause Ca2+ release from membrane stores. TPA inhibits the activation of phospholipase C and consequently the generation of IP3. The decreased accumulation of IP3 in platelets exposed to TPA may account for the inhibited rise in cytoplasmic Ca2+ which has been observed in such platelets.  相似文献   

20.
In both the heavy and light fractions of fragmented sarcoplasmic reticulum (SR) vesicles from the fast skeletal muscle, about 27 min after beginning the active Ca2+ uptake, the extravesicular Ca2+ concentration suddenly increased to reach a steady level (delayed Ca2+ release). Phosphatidylinositol 4,5-bisphosphate (PIP2) not only shortened the time to delayed Ca2+ release but also induced prompt Ca2+ release from the heavy fraction of SR. Delayed Ca2+ release and prompt Ca2+ release stimulated by 100 microM PIP2 were not modified by ruthenium red. PIP2 (>0.1 microM) markedly accelerated the rate of 45Ca2+ efflux from SR vesicles in a concentration-dependent manner. The PIP(2)-induced 45Ca2+ efflux was potentiated by ruthenium red but profoundly inhibited by La3+. The concentration-response curve for Ca2+ or Mg2+ in PIP2-induced 45Ca2+ release was clearly different from that in the Ca(2+)-induced Ca2+ release. PIP2 caused a concentration-dependent increase in Ca2+ release from SR of chemically skinned fibers from skeletal muscle. Furthermore, [3H]ryanodine or [3H]methyl-7-bromoeudistomin D (MBED) binding to SR was increased by PIP2 in a concentration-dependent manner. These observations present the first evidence that PIP2 most likely activates two types of SR Ca2+ release channels whose properties are entirely different from those of Ca(2+)-induced Ca2+ release channels (the ryanodine receptor 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号