首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four genes encoding alcohol dehydrogenase (Adh) isozymes in the thermotolerant yeast Kluyveromyces marxianus, a potent candidate for ethanol production at high temperatures, were investigated. Of these, KmADH3 and KmADH4 were cloned and sequenced, and their deduced amino acid sequences were compared with those of KmAdh1 and KmAdh2 and other Adhs of Kluyveromyces lactis and Saccharomyces cerevisiae. The four KmAdhs had high sequence similarity, though KmAdh3 and KmAdh4 possessed an amino-terminal extension as a mitochondrial targeting sequence, and appear to belong to the zinc-containing Adh family. These results and the results of Southern blot experiments suggest that there are at least four Adh isozymes in K. marxianus, two cytoplasmic enzymes and two mitochondrial enzymes. The expression profile revealed that KmADH genes are differently expressed depending on growth phase and carbon source, suggesting that these highly homologous Adhs play distinctive roles in cells.  相似文献   

2.
In Saccharomyces cerevisiae, the alcohol dehydrogenase genes ADH1 and ADH5 are part of a duplicated block of genome, thought to originate from a genome-wide duplication posterior to the divergence from the Kluyveromyces lineage. We report here the characterization of Kluyveromyces marxianus ADH2 and the five genes found in its immediate downstream region, MRPS9, YOL087C, RPB5, RIB7 and SPP381. The order of these six genes reflects the structure of the ancestral S. cerevisiae genome before the duplication that formed the blocks including ADH1 on chromosome XV and ADH5 on chromosome II, indicating these ADH genes share a direct ancestor. On the one hand, the two genes found immediately downstream of KmADH2 are located, for the first, downstream ADH5 and, for the second, downstream ADH1 in S. cerevisiae. On the other hand, the order of the paralogs included in the blocks of ADH1 and ADH5 in S. cerevisiae suggests that two of them have been inverted within one block after its formation, and that inversion is confirmed by the gene order observed in K. marxianus.  相似文献   

3.
The U3 snoRNA coding sequences from the genomic DNAs of Kluyveromyces delphensis and four variants of the Kluyveromyces marxianus species were cloned by PCR amplification. Nucleotide sequence analysis of the amplification products revealed a unique U3 snoRNA gene sequence in all the strains studied, except for K. marxianus var. fragilis. The K. marxianus U3 genes were intronless, whereas an intron similar to those of the Saccharomyces cerevisiae U3 genes was found in K. delphensis. Hence, U3 genes with and without intron are found in yeasts of the Saccharomycetoideae subfamily. The secondary structure of the K. delphensis pre-U3 snoRNA and of the K. marxianus mature snoRNAs were studied experimentally. They revealed a strong conservation in yeasts of (1) the architecture of U3 snoRNA introns, (2) the 5'-terminal domain of the mature snoRNA, and (3) the protein-anchoring regions of the U3 snoRNA 3' domain. In contrast, stem-loop structures 2, 3, and 4 of the 3' domain showed great variations in size, sequence, and structure. Using a genetic test, we show that, in spite of these variations, the Kluyveromyces U3 snoRNAs are functional in S. cerevisiae. We also show that S. cerevisiae U3A snoRNAs lacking the stem-loop structure 2 or 4 are functional. Hence, U3 snoRNA function can accommodate great variations of the RNA 3'-terminal domain.  相似文献   

4.
Roose  M. L. 《Biochemical genetics》1984,22(7-8):631-643
The alcohol dehydrogenase (ADH) isozymes induced in flooded roots of the diploid plant Stephanomeria exigua are specified by tightly linked genes comprising a complex locus, Adh1. Individuals homozygous for a complex with two active genes which specify electrophoretically different subunits have three ADH-I isozymes, two intragenic homodimers and an intergenic heterodimer. Individual isozymes were partially purified from plants homozygous for several different Adh1 complexes and apparent K m values for acetaldehyde, ethanol, NAD, and NADH and responses to temperature, pH, and two different alcohols were determined. The two homodimeric enzymes specified by a particular Adh1 complex generally differed in one or more of the properties studied, and in three of four cases, intergenic heterodimers differed significantly from intermediacy, often having lower K m values than either homodimer. None of the isozymes studied could be considered greatly divergent or defective. Constraints on evolution of duplicate genes which form intergenic heterodimers are considered.  相似文献   

5.
M. Kreitman  R. R. Hudson 《Genetics》1991,127(3):565-582
The DNA sequences of 11 Drosophila melanogaster lines are compared across three contiguous regions, the Adh and Adh-dup loci and a noncoding 5' flanking region of Adh. Ninety-eight of approximately 4750 sites are segregating in the sample, 36 in the 5' flanking region, 38 in Adh and 24 in Adh-dup. Several methods are presented to test whether the patterns and levels of polymorphism are consistent with neutral molecular evolution. The analysis of within- and between-species polymorphism indicates that the region is evolving in a nonneutral and complex fashion. A graphical analysis of the data provides support for a hypothesized balanced polymorphism at or near position 1490, site of the amino acid replacement difference between Adhf and Adhs. The Adh-dup locus is less polymorphic than Adh and all 24 of its polymorphisms occur at low frequency--suggestive of a recent selective substitution in the Adh-dup region. Adhs alleles form two distinct evolutionary lineages that differ one from another at a total of nineteen sites in the Adh and Adh-dup loci. The polymorphisms are in complete linkage disequilibrium. A recombination experiment failed to find evidence for recombination suppression between the two allelic classes. Two hypotheses are presented to account for the widespread distribution of the two divergent lineages in natural populations. Natural selection appears to have played an important role in governing the overall patterns of nucleotide variation across the two-gene region.  相似文献   

6.
7.
Roose ML  Gottlieb LD 《Genetics》1980,95(1):171-186
Study of the biochemical genetics of alcohol dehydrogenase (ADH) in the annual plant Stephanomeria exigua (Compositae) revealed that the isozymes are specified by a small family of tightly linked structural genes. One set of ADH isozymes (ADH-1) was induced in roots by flooding, and was also expressed in thickened unflooded tap roots, stems, ovaries and seeds. As in other plants, the enzymes are dimeric and form homo- and heterodimers. An electrophoretic survey of ADH-1 phenotypes in two natural populations revealed seven different ADH-1 homodimers in various phenotypes having one to eight enzyme bands. Genetic analysis of segregations from crosses involving 59 plants showed that the ADH-1 isozymes are inherited as a single Mendelian unit, Adh1. Adh1 is polymorphic for forms that specify one, two, or three different ADH-1 subunits (which combine to form homo- and heterodimers), and are expressed co-dominantly in all genotypic combinations. Staining intensity of enzymes extracted from various homozygous and heterozygous plants indicated that the different subunit types specified by Adh1 are produced in approximately equal amounts. These observations suggest that Adh1 is a compound locus consisting of one to several tightly linked (0 recombinants among 579 testcross progeny), coordinately expressed structural genes. The genes in the two triplications also occur in various duplicate complexes and thus could have originated via unequal crossing over. The ADH-2 isozyme found in pollen and seeds is apparently specified by a different gene, Adh2. Adh1 and Adh2 are tightly linked (0 recombinants among 81 testcross progeny).  相似文献   

8.
This study demonstrates that homoeologous genes in two diploid plant species that specify different amounts of an enzyme maintain the same relative level of expression in an allotetraploid derivative. The three predominant alcohol dehydrogenase (ADH) isozymes (DD, DP, PP) in seeds of the recently evolved allotetraploid plant Tragopogon miscellus (Compositae) are dimers specified by Adh3-D and Adh3-P genes derived from its diploid progenitors T. dubius and T. pratensis. Seeds of T. pratensis contain twice as much ADH activity as those of T. dubius, while T. miscellus is intermediate. The three isozymes were similar in a number of catalytic properties; the densitometric ratio of the isozymes purified from T. miscellus was 1 DD:4DP:4PP for both ADH activity and protein; and dissociation-reassociation of the DP enzyme gave a 1:2:1 ratio of the three isozymes. Therefore, the enzymes were similar in specific activity, but twice as many P as D subunits were present in active enzymes in T. miscellus, precisely the difference in activity between the parents. In T. miscellus, the specific activity of ADH and its activity per mg tissue are intermediate to those of the diploids, because relative expression of the Adh gene in each genome is not influenced by the presence of the other genome.  相似文献   

9.
10.
Mitochondrial DNA from the yeast Kluyveromyces marxianus var. lactis (K.lactis) is a circular molecule of 39 kilobase-pairs. A genetic and physical map was constructed. We found that this genome contained a large number of guanine-cytosine (GC)-rich sequence clusters, many of which are characterized by the presence of SacII restriction sites (CCGCGG). The primary sequence of the GC clusters often showed a palindromic structure. These GC clusters were present in several varieties of K.marxianus, but not in others. The presence of these clusters is a major feature that distinguishes K.lactis strains from those of K.marxianus var. marxianus (including K.fragilis).  相似文献   

11.
Genetic basis of the major malate dehydrogenase isozymes in maize   总被引:1,自引:0,他引:1       下载免费PDF全文
Newton KJ  Schwartz D 《Genetics》1980,95(2):425-442
The mitochondrial MDH isozymes in the scutellum of the mature maize (Zea mays L.) kernel are encoded by three independently inherited nuclear genes. Mdh1 is located on chromosome 8, close to the breakpoint (8L.35) of a waxy-marked reciprocal translocation between chromosomes 8 and 9. Mdh2 is located in the distal region of the long arm of chromosome 6. Mdh3 is on the long arm of chromosome 3, approximately 2.6 map units from sh2. A modifier of the mitochondrial MDH isozymes (Mmm) maps approximately 27.5 units proximal to Adh1 in the central portion of the long arm of chromosome 1. Independently assorting duplicate genes code for the soluble MDH isozymes. Mdh4 is located in the same region of chromosome 1 as Mmm, approximately 29 map units proximal to Adh1. Mdh5 maps approximately 20 units distal to a2 in the short arm of chromosome 5.——Intergenic and interallelic heterodimer formation occurs among gene products that occupy the same subcellular compartment. MDH isozymes were purified and analyzed by native-SDS two-dimensional polyacrylamide gel electrophoresis. The proposed mitochondrial MDH intergenic heterodimer bands were found to be composed of two subunits, which differ in their migrations on SDS gels; whereas, genetically defined homodimers contained only one type of subunit.——This evidence is discussed in terms of two genetic models proposed for the maize mitochondrial MDH isozymes.  相似文献   

12.
Expressed sequence tags (ESTs) have proven to be a valuable tool to discover single nucleotide polymorphism (SNP) in human genes but their use for this purpose is still limited in higher plants. Using a database of approximately 250,000 sugarcane ESTs we have recovered 219 sequences encoding alcohol dehydrogenases ( Adh), which tagged 178 distinct cDNAs from 27 libraries, constructed from at least four different cultivars. The partitioning of these ESTs into paralogous genes revealed three Adh genes expressed in sugarcane, one Adh2 and two Adh1. The soundness of the partition was carefully checked by comparison to external data, especially from the closely related sorghum. Analysis of polymorphism in the alignments of EST sequences revealed a total of 37 highly reliable SNPs in the coding and untranslated regions of the three Adh genes. In the coding regions, the mean occurrence of SNPs was one for every 122 base pair. A total of eight insertion-deletions was observed, their occurrence being limited to untranslated regions. These results show that EST data constitute an invaluable source of sequence polymorphism for sugarcane that is worth carefully collecting for the future development of new marker tools.  相似文献   

13.
Kluyveromyces marxianus NBRC1777 was identified as a thermotolerant yeast and was developed as a host for the expression of thermostable cellulase genes. The previously isolated genes for thermostable endo-beta-1,4-glucanase, cellobiohydrolase, and beta-glucosidase were introduced into the chromosome of K. marxianus and successfully expressed under the control of high-expression promoters. The recombinant K. marxianus expressing cellulase genes became able to grow in synthetic medium containing cellobiose or carboxymethyl-cellulose as the single carbon source. Moreover, the recombinant strain produced 43.4 g/L ethanol from 10% cellobiose. These results suggest that K. marxianus may afford a useful host system, which may be applicable to the simultaneous saccharification and fermentation and the foundation of cellulose consolidated bioprocessing.  相似文献   

14.
The attributes of the yeast Kluyveromyces marxianus (rapid growth rate at high temperature, utilization of a wide range of inexpensive carbon sources) make it a promising industrial host for the synthesis of protein and non-protein products. However, no stable multicopy plasmids are currently available for long-term culture of K. marxianus. To allow the stable genetic/metabolic engineering of K. marxianus, a method for integrating precise numbers of the same or different genes was developed for this yeast. A K. marxianus URA3 deletion mutant was constructed and the URA3 blaster (UB) reusable selection cassette from Saccharomyces cerevisiae was used to select sequential, untargeted chromosomal insertions of the Bacillus megaterium lactate dehydrogenase (LDH) gene. Following excision of the UB cassette from the chromosomes, the integrating vector was retransformed into the strain and a second copy of LDH was inserted, demonstrating the success of this method for sequential gene integrations in K. marxianus. LDH activity and lactic acid concentration increased with each gene insertion, further illustrating the success of this method.  相似文献   

15.
16.
The yeast Kluyveromyces marxianus presents several interesting features that make this species a promising industrial yeast for the production of several compounds. In order to take full advantage of this yeast and its particular properties, proper tools for gene disruption and metabolic engineering are needed. The Cre-loxP system is a very versatile tool that allows for gene marker rescue, resulting in mutant strains free of exogenous selective markers, which is a very important aspect for industrial application. As the Cre-loxP system works in some non-conventional yeasts, namely Kluyveromyces lactis, we wished to know whether it also works in K. marxianus. Here, we report the validation of this system in K. marxianus CBS 6556, by disrupting two copies of the LAC4 gene, which encodes a beta-galactosidase activity.  相似文献   

17.
18.
The hypocholesterolemic activities of 81 yeast strains were examined in rats fed a high cholesterol diet (HCD). Male Wistar rats were fed an HCD or an HCD supplemented with 10% yeast for 7 d. It was found that the hypocholesterolemic activities of the yeasts varied remarkably between strains. Kluyveromyces marxianus YIT 8292 exhibited the most potent hypocholesterolemic activity among the yeasts that were tested. K. marxianus YIT 8292 significantly decreased not only plasma total cholesterol but also liver total cholesterol when administered as a dietary admixture at a concentration of 3%. In contrast, brewer's yeast and baker's yeast, which have been predominantly used for food, did not exhibit hypocholesterolemic activity even when administered at a concentration of 10%. These results suggest that K. marxianus YIT 8292 may be utilized as a novel food material with the ability to contribute to the prevention of hypercholesterolemia.  相似文献   

19.
The expression of the enzyme-coding genes, controlling glucose-phosphate isomerase (GPI), malate dehydrogenase (MDH), and alcohol dehydrogenase (ADH), was examined in nongerminating seeds of sugarbeet after Triton X-100 (TX-100) and colchicine treatment. Two types of changes revealed included modification of the enzymatic loci expression (change of the isozyme electrophoretic mobility) and inactivation of standard profiles. In the MDH and GPI systems, these processes were found to be associated. Complete isozyme modification was accompanied with the disappearance of standard profiles. In the ADH system, the treatment with TX-100 and colchicine gave rise to two independent processes, including silencing of the Adh1 locus and the appearance of the ADH isozymes with abnormal electrophoretic mobility, which were probably the products of the Adh2 locus. It was suggested that the effect of TX-100 and colchicine on the expression of the enzyme-encoding genes examined depended on the intracellular localization of the encoded enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号