首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.  相似文献   

2.
3.
She QB  Mukherjee JJ  Huang JS  Crilly KS  Kiss Z 《FEBS letters》2000,469(2-3):163-167
Human placental alkaline phosphatase (PALP) is synthesized in the placenta during pregnancy and is also expressed in many cancer patients; however, its physiological role is unknown. Here we show that in human fetus fibroblasts as well as normal and H-ras-transformed mouse embryo fibroblasts PALP stimulates DNA synthesis and cell proliferation in synergism with insulin, zinc and calcium. The mitogenic effects of PALP are associated with the activation of c-Raf-1, p42/p44 mitogen-activated protein kinases, p70 S6 kinase, Akt/PKB kinase and phosphatidylinositol 3'-kinase. The results suggest that in vivo PALP may promote fetus development as well as the growth of cancer cells which express oncogenic Ras.  相似文献   

4.
5.
In vascular smooth muscle cells (VSMCs), platelet-derived growth factor (PDGF) plays a major role in inducing phenotypic switching from contractile to proliferative state. Importantly, VSMC phenotypic switching is also determined by the phosphorylation state/expression levels of insulin receptor substrate (IRS), an intermediary signaling component that is shared by insulin and IGF-I. To date, the roles of PDGF-induced key proliferative signaling components including Akt, p70S6kinase, and ERK1/2 on the serine phosphorylation/expression of IRS-1 and IRS-2 isoforms remain unclear in VSMCs. We hypothesize that PDGF-induced VSMC proliferation is associated with dysregulation of insulin receptor substrates. Using human aortic VSMCs, we demonstrate that prolonged PDGF treatment led to sustained increases in the phosphorylation of protein kinases such as Akt, p70S6kinase, and ERK1/2, which mediate VSMC proliferation. In addition, PDGF enhanced IRS-1/IRS-2 serine phosphorylation and downregulated IRS-2 expression in a time- and concentration-dependent manner. Notably, phosphoinositide 3-kinase (PI 3-kinase) inhibitor (PI-103) and mammalian target of rapamycin inhibitor (rapamycin), which abolished PDGF-induced Akt and p70S6kinase phosphorylation, respectively, blocked PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. In contrast, MEK1/ERK inhibitor (U0126) failed to block PDGF-induced IRS-1 serine phosphorylation and IRS-2 downregulation. PDGF-induced IRS-2 downregulation was prevented by lactacystin, an inhibitor of proteasomal degradation. Functionally, PDGF-mediated IRS-1/IRS-2 dysregulation resulted in the attenuation of insulin-induced IRS-1/IRS-2-associated PI 3-kinase activity. Pharmacological inhibition of PDGF receptor tyrosine kinase with imatinib prevented IRS-1/IRS-2 dysregulation and restored insulin receptor signaling. In conclusion, strategies to inhibit PDGF receptors would not only inhibit neointimal growth but may provide new therapeutic options to prevent dysregulated insulin receptor signaling in VSMCs in nondiabetic and diabetic states.  相似文献   

6.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

7.
We report here for the first time that the specific MAPK kinase (MEK) inhibitor, PD-98059, completely knocked out granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated MAPK activity but also partially inactivated the ribosomal kinase p70S6K. Since a connection between the two major signaling pathways, Ras/MEK/MAPK and PI3-K/p70S6K was suspected, experiments were designed to prove a molecular crosstalk between those. First, p70S6K protein could be co-immunoprecipitated with anti-MAPK antibodies, MAPK protein was similarly present in anti-p70S6K immunoprecipitates, indicating close spatial proximity of both signaling molecules. Second, p70S6K enzymatic activity was found in anti-MAPK immunoprecipitates and MAPK in anti-p70S6K immunoprecipitates, being the latter activity higher in samples derived from GM-CSF-treated cells. Since an upstream activator of p70S6K, phosphatidylinositol (PI)3-kinase, has been associated to cell movement in phagocytic cells, we studied a possible participation of p70S6K in chemotaxis and whether MAPK had an input. Our data show that functional chemotaxis was inhibited by rapamycin, a specific p70S6K inhibitor, as well as by PD-98059. Thus, a connection between these two kinases extends from the molecular level to cell migration, a key functionality in non-proliferative, mature phagocytes such as neutrophils.  相似文献   

8.
Mammary epithelial cells in primary cell culture require both growth factors and specific extracellular matrix (ECM)-attachment for survival. Here we demonstrate for the first time that inhibition of the ECM-induced Erk 1/Erk 2 (p42/44 MAPK) pathway, by PD 98059, leads to apoptosis in these cells. Associated with this cell death is a possible compensatory signalling through the p38 MAP kinase pathway the inhibition of which, by SB 203580, leads to a more rapid onset of apoptosis. This provides evidence for a hitherto undescribed Erk 1/Erk 2 to p38 MAP kinase pathway 'cross-talk' that is essential for the survival of these cells. The cell death associated with inhibition of these two MAP kinase pathways however, occurred in the presence of insulin that activates the classical PI-3 kinase-dependent Akt/PKB survival signals and Akt phosphorylation. Cell death induced by inhibition of the MAP kinase pathways did not affect Akt phosphorylation and may, thus, be independent of PI-3 kinase signalling.  相似文献   

9.
Activation of p70 S6 kinase (p70(S6K)) by growth factors requires multiple signal inputs involving phosphoinositide 3-kinase (PI3K), its effector Akt, and an unidentified kinase that phosphorylates Ser/Thr residues (Ser(411), Ser(418), Ser(424), and Thr(421)) clustered at its autoinhibitory domain. However, the mechanism by which G protein-coupled receptors activate p70(S6K) remains largely uncertain. By using vascular smooth muscle cells in which we have demonstrated Ras/extracellular signal-regulated kinase (ERK) activation through Ca(2+)-dependent, epidermal growth factor (EGF) receptor transactivation by G(q)-coupled angiotensin II (Ang II) receptor, we present a unique cross-talk required for Ser(411) phosphorylation of p70(S6K) by Ang II. Both p70(S6K) Ser(411) and Akt Ser(473) phosphorylation by Ang II appear to involve EGF receptor transactivation and were inhibited by dominant-negative Ras, whereas the phosphorylation of p70(S6K) and ERK but not Akt was sensitive to the MEK inhibitor. By contrast, the phosphorylation of p70(S6K) and Akt but not ERK was sensitive to PI3K inhibitors. Similar inhibitory pattern on these phosphorylation sites by EGF but not insulin was observed. Taken together with the inhibition of Ang II-induced p70(S6K) activation by dominant-negative Ras and the MEK inhibitor, we conclude that Ang II-initiated activation of p70(S6K) requires both ERK cascade and PI3K/Akt cascade that bifurcate at the point of EGF receptor-dependent Ras activation.  相似文献   

10.
Protein kinase C zeta (zeta PKC) is critically involved in the control of a number of cell functions, including proliferation and nuclear factor kappa B (NF-kappa B) activation. Previous studies indicate that zeta PKC is an important step downstream of Ras in the mitogenic cascade. The stimulation of Ras initiates a kinase cascade that culminates in the activation of MAP kinase (MAPK), which is required for cell growth. MAPK is activated by phosphorylation by another kinase named MAPK kinase (MEK), which is the substrate of a number of Ras-activated serine/threonine kinases such as c-Raf-1 and B-Raf. We show here that MAPK and MEK are activated in vivo by an active mutant of zeta PKC, and that a kinase-defective dominant negative mutant of zeta PKC dramatically impairs the activation of both MEK and MAPK by serum and tumour necrosis factor (TNF alpha). The stimulation of other kinases, such as stress-activated protein kinase (SAPK) or p70S6K, is shown here to be independent of zeta PKC. The importance of MEK/MAPK in the signalling mechanisms activated by zeta PKC was addressed by using the activation of a kappa B-dependent promoter as a biological read-out of zeta PKC.  相似文献   

11.
Functions of signaling mediators Grb10 or Gab1 have been described in mitogenesis but remained disconnected. Here, we report the peptide hormone-dependent direct association between Grb10 and Gab1 and their functional connection in mitogenic signaling via MAP kinase using cultured fibroblasts as a model. In response to PDGF-, IGF-I, or insulin increased levels of Grb10 potentiated cell proliferation or survival whereas dominant-negative, domain-specific Grb10 peptide mimetics attenuated cell proliferation. This response was sensitive to p44/42 MAPK inhibitor but not to p38 MAPK inhibitor. In response to IGF-I or insulin Raf-1, MEK 1/2, and p44/42 MAPK were regulated by Grb10 but not Ras or p38 MAPK. In response to PDGF MEK 1/2, p44/42 MAPK and p38 MAPK were regulated by Grb10 but not Ras or Raf-1. Peptide hormone-dependent co-immunoprecipitation of Grb10 and Gab1 was demonstrated and specifically blocked by a Grb10 SH2 domain peptide mimetic. This domain was sufficient for direct, peptide hormone-dependent association with Gab1 via the Crk binding region. In response to PDGF, IGF-I, or insulin, in a direct comparison, elevated levels of mouse Grb10 delta, or human Grb10 beta or zeta equally potentiated fibroblast proliferation. Proliferation was severely reduced by Gab1 gene disruption whereas an elevated Gab1 gene dose proportionally stimulated Grb10-potentiated cell proliferation. In conclusion, Gab1 and Grb10 function as direct binding partners in the regulation of the mitogenic MAP kinase signal. In cultured fibroblasts, elevated levels of human Grb10 beta, zeta or mouse Grb10 delta comparably potentiate mitogenesis in response to PDGF, IGF-I, or insulin.  相似文献   

12.
13.
In L6 muscle cells expressing wild-type human insulin receptors (L6hIR), insulin induced protein kinase Calpha (PKCalpha) and beta activities. The expression of kinase-deficient IR mutants abolished insulin stimulation of these PKC isoforms, indicating that receptor kinase is necessary for PKC activation by insulin. In L6hIR cells, inhibition of insulin receptor substrate 1 (IRS-1) expression caused a 90% decrease in insulin-induced PKCalpha and -beta activation and blocked insulin stimulation of mitogen-activated protein kinase (MAPK) and DNA synthesis. Blocking PKCbeta with either antisense oligonucleotide or the specific inhibitor LY379196 decreased the effects of insulin on MAPK activity and DNA synthesis by >80% but did not affect epidermal growth factor (EGF)- and serum-stimulated mitogenesis. In contrast, blocking c-Ras with lovastatin or the use of the L61,S186 dominant negative Ras mutant inhibited insulin-stimulated MAPK activity and DNA synthesis by only about 30% but completely blocked the effect of EGF. PKCbeta block did not affect Ras activity but almost completely inhibited insulin-induced Raf kinase activation and coprecipitation with PKCbeta. Finally, blocking PKCalpha expression by antisense oligonucleotide constitutively increased MAPK activity and DNA synthesis, with little effect on their insulin sensitivity. We make the following conclusions. (i) The tyrosine kinase activity of the IR is necessary for insulin activation of PKCalpha and -beta. (ii) IRS-1 phosphorylation is necessary for insulin activation of these PKCs in the L6 cells. (iii) In these cells, PKCbeta plays a unique Ras-independent role in mediating insulin but not EGF or other growth factor mitogenic signals.  相似文献   

14.
15.
In mouse C3H 10T1/2 cells, we previously reported that TGF-beta1 first delays and later potentiates EGF-induced DNA synthesis corresponding to an inhibition of EGF-induced cyclin D1 expression at t = 13 h. We report here that in accord with DNA synthesis kinetics, TGF-beta1 initially suppresses EGF-induced cyclin D1 expression then later releases the inhibition. Furthermore, TGF-beta1 also first decreases and later potentiates the levels of EGF-activated MEK1/MAPK and PKB, indicating the existence of cross talk between TGF-beta 1- and EGF-activated signal transduction pathways. PD98059, the specific inhibitor of MEK1, significantly blocks EGF-induced DNA synthesis, whereas wortmannin, the PI3K inhibitor, exerts a modest inhibitory effect, which suggests that the activation of MEK1-MAPK pathway plays a major role in EGF-induced DNA synthesis and the activation of PI3K-PKB pathway plays a minor role. Upon examination of mechanisms underlying the cross talk, it was discovered that application of TGF-beta1 triggers a rapid association between Raf-1 and catalytic subunits of PKA, which are reported to be able to inactivate Raf-1 upon activation. Therefore, TGF-beta1 may activate PKA to inhibit the EGF-activated MEK1-MAPK pathway. The wortmannin-sensitive phosphorylation at the thr(389) site is necessary for activation of p70s6K, an important kinase involved in mitogen-stimulated protein synthesis. Although we found that EGF-stimulated p70s6K phosphorylates through a MAPK-dependent and a MAPK-independent (wortmannin-sensitive) pathway, TGF-beta1 failed to block EGF-triggered phosphorylation of p70s6K at thr(389) and thr(421)/ser(424) sites, implying that PKB inhibition by TGF-beta1 may result from inhibition of PDK1 activity instead of inhibition of PI3K activity. These data also suggest that TGF-beta1 may selectively perturb certain EGF-activated MAPK pools.  相似文献   

16.
The alpha(1)-adrenergic agonist phenylephrine (PE) and insulin each stimulate protein synthesis in cardiomyocytes. Activation of protein synthesis by PE is involved in the development of cardiac hypertrophy. One component involved here is p70 S6 kinase 1 (S6K1), which lies downstream of mammalian target of rapamycin, whose regulation is thought to involve phosphatidylinositol 3-kinase and protein kinase B (PKB). S6K2 is a recently identified homolog of S6K1 whose regulation is poorly understood. Here we demonstrate that in adult rat ventricular cardiomyocytes, PE and insulin each activate S6K2, activation being 3.5- and 5-fold above basal, respectively. Rapamycin completely blocked S6K2 activation by either PE or insulin. Three different inhibitors of MEK1/2 abolished PE-induced activation of S6K2 whereas expression of constitutively active MEK1 activated S6K2, without affecting the p38 mitogen-activated protein kinase and JNK pathways, indicating that MEK/ERK signaling plays a key role in regulation of S6K2 by PE. PE did not activate PKB, and expression of dominant negative PKB failed to block activation of S6K2 by PE, indicating PE-induced S6K2 activation is independent of PKB. However, this PKB mutant did partially block S6K2 activation by insulin, indicating PKB is required here. Another hypertrophic agent, endothelin 1, also activated S6K2 in a MEK-dependent manner. Our findings provide strong evidence for novel signaling connections between MEK/ERK and S6K2.  相似文献   

17.
The regulation of amphiregulin, an epidermal growth factor (EGF) family member, and its effect on vascular smooth muscle cells (VSMC) were examined. Amphiregulin mRNA was upregulated by amphiregulin itself as well as alpha-thrombin. Amphiregulin caused an approximate 3-fold increase in DNA synthesis. Its effect on growth was compared with those of other mitogens, and was found to be approximately 3.5-, 2.4-, and 1.0-fold greater than those of endothelin-I (ET-I), alpha-thrombin, and platelet-derived growth factor-AB (PDGF-AB), respectively. As evidenced by Western blot analysis, amphiregulin stimulated the phosphorylation of p42/p44-mitogen-activated protein kinase (MAPK), p38-MAPK, c-Jun NH2-terminal protein kinase (JNK), and Akt/protein kinase B (PKB), respectively. By statistical analysis, the amphiregulin-induced growth effect was significantly decreased by the MAP kinase/ extracellular regulated kinase kinase-1 (MEK-1) inhibitor PD98059, p38-MAPK inhibitor SB203580, and phosphatidylinositol 3-kinase (PI-3 kinase) inhibitor wortmannin, respectively, but was not decreased by JNK inhibitor SP600125. These results suggest that amphiregulin is the most potent mitogen of the mitogens tested, and its growth effect is mediated at least in part through the p42/p44-MAPK, p38-MAPK, and PI-3 kinase-Akt/PKB pathways in VSMC.  相似文献   

18.
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.  相似文献   

19.
We report here for the first time the detection of the ribosomal p70S6 kinase (p70S6K) in a hematopoietic cell, the neutrophil, and the stimulation of its enzymatic activity by granulocyte macrophage colony-stimulating factor (GM-CSF). GM-CSF modified the Vmax of the enzyme (from 7.2 to 20.5 pmol/min/mg) and induced a time- and dose-dependent phosphorylation on p70S6K residues Thr389 and Thr421/Ser424. The immunosuppressant macrolide rapamycin caused either a decrease in intensity of phospho-Thr389 bands in Western blots, or as a downshift in the relative mobility of phospho-Thr421/Ser424 bands (consistent with the loss of phosphate), but not both simultaneously. The immunosuppressant FK506 failed to inhibit p70S6K activation, but was able to rescue the rapamycin-induced downshift, pointing to a role for the mammalian target of rapamycin (mTOR) kinase. Rapamycin also caused an inhibition (IC50 0.2 nm) of the in vitro enzymatic activity of p70S6K. However, the inhibition of activity was not complete, but only a 40-50%, indicating that neutrophil p70S6K activity has a rapamycin-resistant component. This component was totally inhibited by pre-incubating the cells with the mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor PD-98059 prior to treatment with rapamycin. This indicated that a kinase from the MEK/MAPK pathway also plays a role in p70S6K activation. Thus, GM-CSF causes the dual activation of a rapamycin-resistant, MAPK-related kinase, that targets Thr421/Ser424 S6K phosphorylation, and a rapamycin-sensitive, mTOR-related kinase, that targets Thr389, both of which are needed in cooperation to achieve full activation of neutrophil p70S6K.  相似文献   

20.
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase that plays an important role in the regulation of cell proliferation and protein synthesis through the activation of its downstream target ribosomal p70 S6 kinase (p70(S6K)). The levels of p-mTOR are regulated by the protein kinase B (Akt/PKB). Therefore, the effects of insulin and rapamycin (an inhibitor of mTOR) on the phosphorylation of mTOR (Ser 2448) and p70(S6K) (Thr 389) as well as on cell proliferation in parental HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB (HepG2-CA-Akt/PKB) were studied. Insulin increased the levels of phosphorylated mTOR and p70(S6K) in both the cell lines. Rapamycin treatment partially decreased the phosphorylation of mTOR but completely abolished the phosphorylation of p70(S6K) in the absence as well as presence of insulin in both cell lines. The effect of insulin and rapamycin on the cell proliferation in both cell lines was further studied. In the presence of serum, parental HepG2 cells and HepG2-CA-Akt/PKB showed an increase in cell proliferation until 120 and 168 h respectively. Rapamycin inhibited cell proliferation under all experimental conditions more evident under serum deprived conditions. Parental HepG2 cells showed decline in the cell proliferation after 48 h and the presence of insulin prolonged cell survival until 120 h and this effect were also inhibited by rapamycin under serum deprived conditions. On the contrary, HepG2-CA-Akt/PKB cells continued proliferation until 192 h. The effects of insulin on cell proliferation were more pronounced in parental HepG2 cells as compared to HepG2-CA-Akt/PKB cells. Long term effects of rapamcyin significantly decreased the levels of p-mTOR (Ser 2448) both in the presence and absence of insulin in these cells. A positive correlation between the levels of p-mTOR (Ser2448) and cell proliferation was observed (99% confidence interval, r(2)=0.525, p<0.0001). These results suggest that rapamycin causes a decline in the cell growth through the inhibition of mTOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号