首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-cell apoptosis in an accelerated model of autoimmune diabetes.   总被引:4,自引:0,他引:4       下载免费PDF全文
BACKGROUND: The non-obese diabetic (NOD) mouse is a model of human type 1 diabetes in which autoreactive T cells mediate destruction of pancreatic islet beta cells. Although known to be triggered by cytotoxic T cells, apoptosis has not been unequivocally localized to beta cells in spontaneously diabetic NOD mice. We created a model of accelerated beta-cell destruction mediated by T cells from spontaneously diabetic NOD mice to facilitate the direct detection of apoptosis in beta cells. MATERIALS AND METHODS: NOD.scid (severe combined immunodeficiency) mice were crossed with bm1 mice transgenically expressing the costimulatory molecule B7-1 (CD80) in their beta cells, to generate B7-1 NOD.scid mice. Apoptosis in islet cells was measured as DNA strand breakage by the TdT-mediated-dUTP-nick end labeling (TUNEL) technique. RESULTS: Adoptive transfer of splenocytes from spontaneously diabetic NOD mice into B7-1 NOD.scid mice caused diabetes in recipients within 12-16 days. Mononuclear cell infiltration and apoptosis were significantly greater in the islets of B7-1 NOD.scid mice than in nontransgenic NOD.scid mice. Dual immunolabeling for TUNEL and either B-7 or insulin, or the T cell markers CD4 and CD8, and colocalization by confocal microscopy clearly demonstrated apoptosis in beta cells as well in a relatively larger number of infiltrating T cells. The clearance time of apoptotic beta cells was estimated to be less than 6 min. CONCLUSIONS: B7-1 transgenic beta cells undergo apoptosis during their accelerated destruction in response to NOD mouse effector T cells. Rapid clearance implies that beta cells undergoing apoptosis would be detected only rarely during more protracted disease in spontaneously diabetic NOD mice.  相似文献   

2.
Restoration of endogenous insulin production by islet transplantation is considered a curative option for patients with type 1 diabetes. However, recurrent autoimmunity and alloreactivity cause graft rejection hindering successful transplantation. Here we tested whether transplant tolerance to allogeneic islets could be achieved in non-obese diabetic (NOD) mice by simultaneously tackling autoimmunity via antigen-specific immunization, and alloreactivity via granulocyte colony stimulating factor (G-CSF) and rapamycin (RAPA) treatment. Immunization with insB9-23 peptide alone or in combination with two islet peptides (IGRP206-214 and GAD524-543) in incomplete Freund’s adjuvant (IFA) were tested for promoting syngeneic pancreatic islet engraftment in spontaneously diabetic NOD mice. Treatment with G-CSF/RAPA alone or in combination with insB9-23/IFA was examined for promoting allogeneic islet engraftment in the same mouse model. InsB9-23/IFA immunization significantly prolonged syngeneic pancreatic islet survival in NOD mice by a mechanism that necessitated the presence of CD4+CD25+ T regulatory (Treg) cells, while combination of three islet epitopes was less efficacious in controlling recurrent autoimmunity. G-CSF/RAPA treatment was unable to reverse T1D or control recurrent autoimmunity but significantly prolonged islet allograft survival in NOD mice. Blockade of interleukin-10 (IL-10) during G-CSF/RAPA treatment resulted in allograft rejection suggesting that IL-10-producing cells were fundamental to achieve transplant tolerance. G-CSF/RAPA treatment combined with insB9-23/IFA did not further increase the survival of allogeneic islets. Thus, insB9-23/IFA immunization controls recurrent autoimmunity and G-CSF/RAPA treatment limits alloreactivity, however their combination does not further promote allogeneic pancreatic islet engraftment in NOD mice.  相似文献   

3.
Splenocytes from prediabetic female NOD mice can transfer diabetes to NOD-SCID mice. Whereas the kinetics of disease transfer was shown to be a function of the age of donor splenocytes, information is scarce as to how the stage of autoimmune disease, as evaluated by pancreatic insulin content, is related to the diabetogenic potency of splenic T-cells. We therefore determined individual diabetes transfer times after an i. v. injection of splenocytes from prediabetic NOD mice of different ages into female NOD-SCID mice in relation to the diabetes incidence in NOD donor mice and their pancreatic insulin contents. Three groups (n = 8) of NOD mice aged 5, 11, and 17 weeks (wk) underwent splenectomy and hemipancreatectomy. After that, 10x10 (6) splenocytes either pooled from all donor NOD mice of the different age groups or individually from single donor mice were transferred to groups of four 6-week-old NOD-SCID mice, respectively, in two sets of experiments. Insulin was extracted from the resected hemipancreas, and the insulin content was determined by a RIA. Diabetes in the NOD-SCID cohort occurred after a mean time of 126 days after transfer of pooled splenocytes from 5-week-old NODs, after 68 days (transfer from 11-week-old NODs), and after a mean time of 43 days (transfer from 17-week-old NODs, 5 vs. 11 wk: p < 0.02, 11 vs. 17 wk: p < 0.001). Individual time to diabetes positively correlated with diabetes transfer times in NOD-SCID recipients (p < 0.0001) in the 17-week-old NOD mice, confirming previous diabetes transfer studies in hemi-pancreatectomized NOD mice. Furthermore, individual insulin concentrations in 17-week-old NOD mice also positively correlated to diabetes transfer times in recipient mice (p < 0.0001). No such correlations for these parameters were seen for the 5 and 11-week-old NOD mice (time to diabetes: 11 wk, p = 0.14, 5 wk, p = 0.75; insulin content: 11 wk, p = 0.81, 5 wk, p = 0.14). These data suggest that destructive T-cell activity increases during the course of islet autoimmunity. The immune response seems to be programmed for beta-cell destruction just before diabetes onset. This is the only time that pancreatic insulin content predicts the impending onset of diabetes.  相似文献   

4.
BDC2.5/nonobese diabetic (NOD) transgenic mice express a TCR from a diabetogenic T cell clone yet do not spontaneously develop diabetes at high incidence. Evidence exists showing that in the absence of endogenous TCR alpha-chain rearrangements this transgenic mouse spontaneously develops diabetes and that CTLA-4 negatively regulates diabetes onset. This strongly suggests that onset of diabetes in BDC2.5/NOD mice is governed by T cell regulation. We addressed the mechanism of immune regulation in BDC2.5/NOD mice. We find that activated spleen cells from young, but not old, BDC2.5/NOD mice are able to transfer diabetes to NOD-scid recipients. We have used anti-IL-10R to show that the failure of splenocytes from older mice to transfer diabetes is due to dominant regulation. We furthermore found that diabetes developed following anti-IL-10R treatment of 6-wk old BDC2.5/NOD mice indicating that endogenous IL-10 plays a key role in the regulation of diabetes onset in this transgenic mouse.  相似文献   

5.
6.
Pancreatic beta cell destruction in type 1 diabetes is mediated by cytotoxic CD8(+) T lymphoctyes (CTL). Granzyme B is an effector molecule used by CTL to kill target cells. We previously showed that granzyme B-deficient allogeneic CTL inefficiently killed pancreatic islets in vitro. We generated granzyme B-deficient non-obese diabetic (NOD) mice to test whether granzyme B is an important effector molecule in spontaneous type 1 diabetes. Granzyme B-deficient islet antigen-specific CD8(+) T cells had impaired homing into islets of young mice. Insulitis was reduced in granzyme B-deficient mice at 70 days of age (insulitis score 0.043±0.019 in granzyme B-deficient versus 0.139±0.034 in wild-type NOD mice p<0.05), but was similar to wild-type at 100 and 150 days of age. We observed a reduced frequency of CD3(+)CD8(+) T cells in the islets and peripheral lymphoid tissues of granzyme B-deficient mice (p<0.005 and p<0.0001 respectively), but there was no difference in cell proportions in the thymus. Antigen-specific CTL developed normally in granzyme B-deficient mice, and were able to kill NOD islet target cells as efficiently as wild-type CTL in vitro. The incidence of spontaneous diabetes in granzyme B-deficient mice was the same as wild-type NOD mice. We observed a delayed onset of diabetes in granzyme B-deficient CD8-dependent NOD8.3 mice (median onset 102.5 days in granzyme B-deficient versus 57.50 days in wild-type NOD8.3 mice), which may be due to the delayed onset of insulitis or inefficient priming at an earlier age in this accelerated model of diabetes. Our data indicate that granzyme B is dispensable for beta cell destruction in type 1 diabetes, but is required for efficient early activation of CTL.  相似文献   

7.
The destruction of beta cells in type 1 diabetes (T1D) results in loss of insulin production and glucose homeostasis. Treatment of non-obese diabetic (NOD) mice with immune-depleting/modulating agents (e.g., anti-CD3, murine anti-thymocyte-globulin (mATG)) can lead to diabetes reversal. However, for preclinical studies with these and other agents seeking to reverse disease at onset, the necessity for exogenous insulin administration is debated. Spontaneously diabetic NOD mice were treated with a short-course of mATG and insulin provided as drug therapy or by way of allogeneic islet implants. Herein we demonstrate that exogenous insulin administration is required to achieve disease reversal with mATG in NOD mice. Unexpectedly, we also observed that provision of insulin by way of allogeneic islet implantation in combination with mATG leads to a pronounced reversal of diabetes as well as restoration of tolerance to self-islets. Expansion/induction of regulatory cells was observed in NOD mice stably cured with mATG and allogeneic islets. These data suggest that transient provision of allogeneic insulin-producing islets might provide a temporary window for immune depletion to be more effective and instilling stable tolerance to endogenous beta cells. These findings support the use of a never before explored approach for preserving beta cell function in patients with recent onset T1D.  相似文献   

8.
Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet beta cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged > or = 12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8(+) T-cell proportions in islets. Levels of beta-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after beta-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of beta cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.  相似文献   

9.
Pregnancy in diabetic mothers is associated with intrauterine death, perinatal mortality, and birth weight greater than that of infants born of normal mothers. The use of rodents made diabetic by alloxan or streptozotocin as an animal model for human diabetic pregnancy has been controversial because of the severity of the diabetes as well as the direct effect of diabetogenic drugs on the developing organism. Among our female NOD (nonobese diabetic) mice, insulin-dependent diabetes occurs spontaneously in 9% by 12 weeks and in 80% by 29 weeks of age. Offspring born within 21 days of conception to mildly hyperglycemic NOD pregnant mice between 26 and 52 weeks of age, and prior to the onset of maternal ketonuria are macrosomic with an average of 31% increase in body weight and 44% increase in kidney weight, in comparison to controls. Besides organomegaly, the macrosomic offspring have significantly higher pancreatic insulin content which was elevated 80% when compared with that of controls, and litter sizes are significantly 50% smaller. These results suggest that the mildly hyperglycemic pregnant NOD mouse represents a promising model for the study of pregnancy complicated by diabetes.  相似文献   

10.
Once nonobese diabetic (NOD) mice become diabetic, they are highly resistant to islet transplantation. The precise mechanism of such resistance remains largely unknown. In the present study we tested the hypothesis that islet allograft survival in the diabetic NOD mouse is determined by the interplay of diverse islet-specific T cell subsets whose activation is regulated by CD28/CD154 costimulatory signals and the common gamma-chain (gammac; a shared signaling element by receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21). We found that common gammac blockade is remarkably effective in blocking the onset and the ongoing autoimmune diabetes, whereas CD28/CD154 blockade has no effect in suppressing the ongoing diabetes. However, CD28/CD154 blockade completely blocks the alloimmune-mediated islet rejection. Also, a subset of memory-like T cells in the NOD mice is resistant to CD28/CD154 blockade, but is sensitive to the common gammac blockade. Nonetheless, neither common gammac blockade nor CD28/CD154 blockade can prevent islet allograft rejection in diabetic NOD mice. Treatment of diabetic NOD recipients with CD28/CD154 blockade plus gammac blockade markedly prolongs islet allograft survival compared with the controls. However, allograft tolerance is not achieved, and all CTLA-4Ig-, anti-CD154-, and anti-gammac-treated diabetic NOD mice eventually rejected the islet allografts. We concluded that the effector mechanisms in diabetic NOD hosts are inherently complex, and rejection in this model involves CD28/CD154/gammac-dependent and -independent mechanisms.  相似文献   

11.
Pancreatic islets of Langerhans are enveloped by peri-islet Schwann cells (pSC), which express glial fibrillary acidic protein (GFAP) and S100beta. pSC-autoreactive T- and B-cell responses arise in 3- to 4-week-old diabetes-prone non-obese diabetic (NOD) mice, followed by progressive pSC destruction before detectable beta-cell death. Humans with probable prediabetes generate similar autoreactivities, and autoantibodies in islet-cell autoantibody (lCA) -positive sera co-localize to pSC. Moreover, GFAP-specific NOD T-cell lines transferred pathogenic peri-insulitis to NOD/severe combined immunodeficient (NOD/SCID) mice, and immunotherapy with GFAP or S100beta prevented diabetes. pSC survived in rat insulin promoter Iymphocytic choriomeningitis virus (rip-LCMV) glycoprotein/CD8+ T-cell receptor(gp) double-transgenic mice with virus-induced diabetes, suggesting that pSC death is not an obligate consequence of local inflammation and beta-cell destruction. However, pSC were deleted in spontaneously diabetic NOD mice carrying the CD8+/8.3 T-cell receptor transgene, a T cell receptor commonly expressed in earliest islet infiltrates. Autoimmune targeting of pancreatic nervous system tissue elements seems to be an integral, early part of natural type 1 diabetes.  相似文献   

12.
The nonobese diabetic (NOD) mouse spontaneously develops autoimmune diabetes after 12 weeks of age and is the most extensively studied animal model of human Type 1 diabetes (T1D). Cell transfer studies in irradiated recipient mice have established that T cells are pivotal in T1D pathogenesis in this model. We describe herein a simple method to rapidly induce T1D by adoptive transfer of purified, primary CD4+ T cells from pre-diabetic NOD mice transgenic for the islet-specific T cell receptor (TCR) BDC2.5 into NOD.SCID recipient mice. The major advantages of this technique are that isolation and adoptive transfer of diabetogenic T cells can be completed within the same day, irradiation of the recipients is not required, and a high incidence of T1D is elicited within 2 weeks after T cell transfer. Thus, studies of pathogenesis and therapeutic interventions in T1D can proceed at a faster rate than with methods that rely on heterogenous T cell populations or clones derived from diabetic NOD mice.  相似文献   

13.
Insulin binding to circulating erythrocytes was studied in nonobese diabetic (NOD) mice which develop insulinopenic diabetes mellitus spontaneously. NOD mice with a short duration of diabetes mellitus and mild insulinopenia did not show any change in insulin binding, while those with a long duration of diabetes mellitus and severe insulinopenia showed an increase in insulin binding compared with nondiabetic NOD mice (6.85 +/- 0.38% bound vs. 4.19 +/- 0.24% bound, p less than 0.01). This increase in insulin binding was due to an increase in the number of receptors. Insulin treatment of diabetic NOD mice significantly reduced the insulin binding by 64%, which resulted from a decrease in the number of the receptors. These results indicate that insulin binding to erythrocytes in NOD mice is controlled mostly by up-and-down regulation.  相似文献   

14.
Expression of IL-10 transgene (tg) in pancreatic beta cells failed to induce autoimmune insulitis and diabetes in (BALB/c x NOD)F1 mice. However, IL-10-expressing tg littermates from backcrosses (N2 and N3) with NOD mice became diabetic at 5 to 10 weeks of age in an MHC-dependent manner. In this study, we tested the possibility that enhancement in frequency of islet antigen (Ag)-specific T cells overrides the protective effects of a diabetes-resistant genetic background and promotes diabetes in IL-10 tg (BALB/c x NOD)F1 mice. For this test, we introduced the IL-10 transgene into tg BDC2.5 mice expressing the islet Ag-specific Vbeta4 T cell repertoire by breeding Ins-IL-10+/BALB/c mice with BDC2.5 mice. The progeny (Ins-IL-10+/BALB/c x BDC2.5+)F1 mice doubly tg for IL-10 and Vbeta4 (BDC2.5) T cell repertoire, developed diabetes at 10 to 18 weeks of age with a much more aggressive T cell infiltrate in the pancreatic islets than in single tg mice. Surprisingly, these diabetic mice were free from acute pancreatitis but had apoptotic beta cells in the islet infiltrate. Conversely, mice tg for Vbeta4 (BDC2.5) T cell repertoire but not IL-10 had no diabetes and no apoptotic beta cells in the islet infiltrate. Therefore, an increase in the frequency of islet-specific T cells apparently overcomes the protection from diabetes by a resistant genetic background. Interestingly, N2 backcross mice doubly tg for Vbeta4 (BDC2.5) T cell repertoire and IL-10, compared to N2 backcross mice tg for IL-10 only, eventually became diabetic but with a delayed onset and reduced incidence of disease. These findings demonstrate that, along with IL-10, an increase in frequency of islet antigen-specific T cells (a) overrides the protective effect of genetic resistance to autoimmune diabetes in F1 mice and (b) delays the onset of an otherwise accelerated diabetes in (Ins-IL-10+/NOD)N2 backcross mice.  相似文献   

15.
During type 1 diabetes, most beta cells die by immune processes. However, the precise fate and characteristics of beta cells and islet autoimmunity after onset are unclear. Here, the extent of beta cell survival was determined in the non-obese diabetic (NOD) mouse during increasing duration of disease and correlated with insulitis. Pancreata from female NOD mice at diagnosis and at 1, 2, 3 and 4 weeks thereafter were analysed immunohistochemically for insulin, glucagon and somatostatin cells and glucose transporter-2 (glut2) and correlated with the degree of insulitis and islet immune cell phenotypes. Insulitis, although variable, persisted after diabetes and declined with increasing duration of disease. During this period, beta cells also declined sharply whereas glucagon and somatostatin cells increased, with occasional islet cells co-expressing insulin and glucagon. Glut2 was absent in insulin-containing cells from 1 week onwards. CD4 and CD8 T cells and macrophages persisted until 4 weeks, in islets with residual beta cells or extensive insulitis. We conclude that after diabetes onset, some beta cells survive for extended periods, with continuing autoimmunity and expansion of glucagon and somatostatin cells. The absence of glut2 in several insulin-positive cells suggests that some beta cells may be unresponsive to glucose.  相似文献   

16.
Nonobese diabetic (NOD) mice spontaneously develop insulitis and destruction of pancreatic islet beta cells similar to type 1 diabetes mellitis in humans. Insulitis also occurs in the BDC2.5 TCR transgenic line of NOD mice that express the rearranged TCR alpha- and beta-chain genes of a diabetogenic NOD CD4 T cell clone. When activated with syngeneic islet cells in culture, BDC2.5 T cells adoptively transfer disease to NOD recipients, but the identity of the islet cell Ag responsible for pathogenicity is not known. To characterize the autoantigen(s) involved, BDC2.5 T cells were used to screen a combinatorial peptide library arranged in a positional scanning format. We identified more than 100 decapeptides that stimulate these T cells at nanomolar concentrations; they are then capable of transferring disease to NOD-scid mice. Surprisingly, some of the peptides include sequences similar (8 of 10 residues) to those found within the 528-539 fragment of glutamic acid decarboxylase 65. Although this 12-mer glutamic acid decarboxylase 65 fragment is only slightly stimulatory for BDC2.5 T cells (EC(50) > 100 microM), a larger 16-mer fragment, 526-541, shows activity in the low micromolar range (EC(50) = 2.3 microM). Finally, T cells from prediabetic NOD mice respond spontaneously to these peptide analogs in culture; this finding validates them as being related to a critical autoantigen involved in the etiology of spontaneous diabetes and indicates that their further characterization is important for a better understanding of underlying disease mechanisms.  相似文献   

17.

Background

Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes.

Methods

We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5–7×106 differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels.

Results

The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001).

Conclusions

The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.  相似文献   

18.
Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model.  相似文献   

19.
NOD mice spontaneously develop diabetic syndrome similar to that of insulin-dependent diabetes mellitus in man. Insulitis, i.e., lymphocytic infiltration into the pancreatic islets is the etiologic pathological lesion in the development of diabetes mellitus in NOD mice. In the present study, we examined the role of the T cell in the development of insulitis and overt diabetes in NOD mice using NOD athymic and euthymic congenic mice. None of the NOD athymic mice developed insulitis at 9 weeks of age or overt diabetes up to 30 weeks of age. In contrast, NOD euthymic littermates showed almost the same incidences of insulitis and overt diabetes as those of NOD mice. These observations suggest that T cells are essential for the development of insulitis and overt diabetes in NOD mice.  相似文献   

20.
Alterations in the somatostatin (SRIF)-, insulin- and glucagon-containing cells were examined in two strains of spontaneously diabetic mice, KK and newly inbred non-obese diabetic (NOD) mice, using radioimmunoassay and immunohistochemical methods. The total pancreatic content and concentration of SRIF was decreased in male KK mice compared to their male controls aged 12-18 weeks. These results were consistent with the immunohistochemical findings. Pancreatic glucagon concentration and number of glucagon-containing cells were also decreased in KK mice, but pancreatic insulin concentrations were increased in KK mice. On the other hand, NOD mice aged 12-38 weeks within 15 days after onset of diabetes had increased concentrations of pancreatic SRIF. The pancreatic islets in NOD mice were decreased both in number and in size and were characterized by lymphocyte infiltration. SRIF-containing cells occupied the major part of the endocrine cells of the islets. Insulin-containing cells significantly decreased in number, but the number of glucagon-containing cells was fairly well preserved. These results and previous work concerning obob and dbdb mice indicate a parallel relationship between pancreatic SRIF and glucagon. The pancreatic glucagon thus as well as the pancreatic insulin may be an important determinant of pancreatic SRIF concentration in these diabetic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号