首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The gene family encoding the small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase in the monocot Lemna gibba contains approximately twelve members. We have isolated six of these genes from a genomic library, and sequenced five of the coding regions. The transit peptide nucleotide sequences are conserved, but less highly than the mature polypeptide coding sequence. The mature polypeptide amino acid sequences are identical to each other and to the sequence deduced from a cDNA clone derived from a seventh gene. Each of the five fully characterized genomic sequences contains a single intron in precisely the same position as the second intron of several dicots. The intron sequences differ in length and are less conserved than the coding sequences.The 3-untranslated regions of the different genes have been sequenced and used to prepare gene-specific probes. These probes have been used to study the expression levels of individual rbcS sequences. Expression of six of the seven genes can be detected in total RNA isolated from plants grown in continuous light. The levels of RNA encoded by each expressed gene are regulated by the action of phytochrome, but there is variability in the amount of expression of each RNA.  相似文献   

3.
4.
Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase   总被引:13,自引:0,他引:13  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis, but O2 competes with CO2 for substrate ribulose 1,5-bisphosphate, leading to the loss of fixed carbon. Interest in genetically engineering improvements in carboxylation catalytic efficiency and CO2/O2 specificity has focused on the chloroplast-encoded large subunit because it contains the active site. However, there is another type of subunit in the holoenzyme of plants, which, like the large subunit, is present in eight copies. The role of these nuclear-encoded small subunits in Rubisco structure and function is poorly understood. Small subunits may have originated during evolution to concentrate large-subunit active sites, but the extensive divergence of structures among prokaryotes, algae, and land plants seems to indicate that small subunits have more-specialized functions. Furthermore, plants and green algae contain families of differentially expressed small subunits, raising the possibility that these subunits may regulate the structure or function of Rubisco. Studies of interspecific hybrid enzymes have indicated that small subunits are required for maximal catalysis and, in several cases, contribute to CO2/O2 specificity. Although small-subunit genetic engineering remains difficult in land plants, directed mutagenesis of cyanobacterial and green-algal genes has identified specific structural regions that influence catalytic efficiency and CO2/O2 specificity. It is thus apparent that small subunits will need to be taken into account as strategies are developed for creating better Rubisco enzymes.  相似文献   

5.
Abstract The evolutionary relationship of the RuBisCO large subunit gene(s) ( rbcL ) of several prokaryotes was examined using the technique of heterologous DNA hybridization. Restriction fragments of cloned rbcL from Anacystis nidulans 6301, Chlamydomonas reinhardtii, Rhodospirillum rubrum , and maize were nick-translated and used as probes. The C. reinhardtii and maize probes hybridized with restriction fragment(s) only from cyanobacteria: Agmenellum quadruplicatum, Fremyella diplosiphon , and Mastigocladus laminosus . In addition, the A. nidulans probe hybridized with restriction fragment(s) from Alcaligenes eutrophus, Chromatium vinosum, Nitrobacter hamburgensis, Paracoccus denitrificans, Pseudomonas oxalaticus, Rhodomicrobium vannielii, Rhodopseudomonas capsulata, Rhodopseudomonas palustris, Rhodopseudomonas sphaeroides, Thiobacillus intermedius, Thiobacillus neapolitanus , and Thiothrix nivea . The elucidated fragment of Rhodopseudomonas species is presumably for the Form I RuBisCO LSU of these organisms. The R. rubrum probe hybridized only to a restriction fragment(s) from R. capsulata, R. palustris, R. sphaeroides, T. neapolitanus , and T. nivea . The fragment(s) of Rhodopseudomonas species is the Form II rbcL of these organisms. The restriction fragments of T. neapolitanus and T. nivea were also different from those elucidated by the A. nidulans probe, suggesting the presence of a second (different) rbcL in these organisms. Positive hybridization was not obtained using any of the probes with DNA from Beggiatoa alba, Chlorobium vibrioforme or Chloroflexus aurantiacus . It appears that all rbcL have evolved from a common ancestor. Our data are consistent with and supportive of the evolutionary scheme for RuBisCO proposed by Akazawa, Takabe, and Kobayashi [1].  相似文献   

6.
Summary Isoelectric focusing of subunits of ribulose 1,5-bisphosphate carboxylase oxygenase of Medicago, Spinacia and Nicotiana were investigated, using a rapid isolation technique, without S-carboxymethylation. RuBPC-ase and its subunits were isolated by gel electrophoresis. Isoelectric focusing of RuBPC-ase of M. sativa and M. falcata showed that this enzyme consists of one large subunit (LSU) polypeptide and two or three small subunits (SSU), depending on the genotype. The pl of the LSU's was identical, but the pl of SSU's of the two genotypes was different. Amino acid composition and tryptic peptide maps further supported the concept of a conserved nature of LSU and heterogeneity of SSU polypeptides in Medicago. It was also found that S. oleracea, N. tabacum, N. glutinosa and N. excelsior have a single LSU polypeptide, but they differ in respect of pl values. The SSU polypeptides appeared to be variable. S-carboxymethylation affected the number as well as the pl values of LSU and SSU polypeptides. It is suggested that one LSU polypeptide is probably the general rule in higher plants, rather than the three LSU polypeptides demonstrated by Chen et al. (1977) and Wildman (1979).  相似文献   

7.
Ribulose 1,5-bisphosphate carboxylase/oxygenase has been reported to occur in multiple forms in mung bean (Phaseolus aureus) using Sephadex G-200 chromatography. We have isolated this enzyme by identical methodology. The profile from Sephadex G-200 chromatography shows only one peak in contrast to the previous report and we find no evidence to corroborate the conclusions. Where Vc, Vo and Kc, Ko represent Vmax and Michaelis constants, respectively, the constant VcKo/VoKc for the single form is 70 at 40 μM CO2 and 1200 μM O2.  相似文献   

8.
The abundances of ribulose-1,5-bisphosphate carboxylate/oxygenase (Rubisco) and ribulose-5-phosphate (Ru5P) kinase in field-grown soybean (Glycine max L. Merr.) leaves were quantified by a Western blot technique and related to changes in chlorophyll and photosynthetic capacity during senescence. Even though the leaf content of Rubisco was approximately 80-fold greater than that of Ru5P kinase, the decline in the levels of these two Calvin cycle enzymes occurred in parallel during the senescence of the leaves. Moreover, the decrease in the content of Rubisco was accompanied by parallel decreases of both the large and small subunits of this enzyme but not by an accumulation of altered large or small subunit isoforms. With increasing senescence, decreases in abundances of Rubisco, Ru5P kinase and chlorophyll were closely correlated with the decline in photosynthetic capacity; thus, the specific photosynthetic capacity when expressed per abundance of any of these parameters was rather constant despite an 8-fold decrease in photosynthetic capacity. These results suggest that during senescence of soybean leaves the chloroplast is subject to autolysis by mechanisms causing an approximately 80-fold greater rate of loss of Rubisco than Ru5P kinase.Jointly supported by the United States Department of Agricultural Research Service and the Kentucky Agricultural Experiment Station, Lexington (paper No. 88 3 286).Mention of a commercial product does not constitute endorsement by the United States Department of Agriculture.  相似文献   

9.
The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase   总被引:1,自引:0,他引:1  
The substrate specificity factor, V cKo/VoKc, of spinach (Spinacia oleracea L.) ribulose 1,5-bisphosphate carboxylase/oxygenase was determined at ribulosebisphosphate concentrations between 0.63 and 200 M, at pH values between 7.4 and 8.9, and at temperatures in the range of 5° C to 40° C. The CO2/O2 specificity was the same at all ribulosebisphosphate concentrations and largely independent of pH. With increasing temperature, the specificity decreased from values of about 160 at 5° C to about 50 at 40° C. The primary effects of temperature were on K c [Km(CO2)] and V c [Vmax (CO2)], which increased by factors of about 10 and 20, respectively, over the temperature range examined. In contrast, K o [Ki (O2)] was unchanged and V o [Vmax (O2)] increased by a factor of 5 over these temperatures. The CO2 compensation concentrations () were calculated from specificity values obtained at temperatures between 5° C and 40° C, and were compared with literature values of . Quantitative agreement was found for the calculated and measured values. The observations reported here indicate that the temperature response of ribulose 1,5-bisphosphate carboxylase/oxygenase kinetic parameters accounts for two-thirds of the temperature dependence of the photorespiration/photosynthesis ratio in C3 plants, with the remaining one-third the consequence of differential temperature effects on the solubilities of CO2 and O2.Abbreviations RuBPC/O(ase) ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - CO2 compensation concentration  相似文献   

10.
11.
12.
Ribulose-1,5-bisphosphate carboxylase/oxygelase (RuBPCase) was studied in melon leaves infected by Colletotrichum lagenarium, a fungal pathogen of melons. Electrophoretic analysis of melon leaf proteins indicated a strong effect of infection on RuBPCase, the subunits of which gradually disappeared during the different stages of infection. Enzyme activity also declined 4 d after inoculation and its content, measured by immunoelectrophoresis, decreased to a similar extent. Synthesis of the large and small subunits of RuBPCase was followed by in-vivo pulse-labeling experiments. A drastic decrease in the rate of RuBPCase-subunit synthesis occurred 3 d after inoculation and preceded the appearance of disease symptoms. There was an apparent coordination of the synthesis of the two subunits under these conditions.Abbreviations LS (SS) Large (small) subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

13.
14.
Summary The response to selection for leaf proteins was studied during three selection cycles. Selection for high total nitrogen content showed 75% heritability, and the levels of both ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco) and cytoplasmic protein were strongly under nuclear DNA control. High and low protein content were correlated with chloroplast area. Although the amounts of nuclear DNA were similar, the ratio of Rubisco/DNA and chlorophyll/DNA changed during the selection process. It can be concluded that the levels of Rubisco achieved in mature plants of M. sativa are under nuclear DNA control. The possible involvement of small subunit (SSU) genes in controlling these levels is discussed.  相似文献   

15.
16.
The life of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), from gene to protein to irreplaceable component of photosynthetic CO2 assimilation, has successfully served as a model for a number of essential cellular processes centered on protein chemistry and amino acid modifications. Once translated, the two subunits of Rubisco undergo a myriad of co- and posttranslational modifications accompanied by constant interactions with structurally modifying enzymes. Even after final assembly, the essential role played by Rubisco in photosynthetic CO2 assimilation is dependent on continuous conformation modifications by Rubisco activase. Rubisco is also continuously assaulted by various environmental factors, resulting in its turnover and degradation by processes that appear to be enhanced during plant senescence.  相似文献   

17.
The condensation of D-fructose 6-phosphate or 1-phosphate with cyanide has been used to synthesize 2-carboxyhexitol 6-phosphates and 1-phosphates. The products have been characterized in terms of their action on ribulose bisphosphate carboxylase/oxygenase. The reaction of D-fructose 6-phosphate with cyanide is four times as fast (at 22°C) at pH 7.5 than at pH 11.5 and the primary products of condensation are more easily isolated by anion exchange chromatography. Two minor chromatographic peaks (I and II) for diastereomeric 2-carboxyhexitol 6-phosphates are isolated in addition to two major peaks, III and IV, which are lactones. The lactones are those of 2-C-carboxy-D-glucitol 6-phosphate (CG6P) in peak III and 2-C-carboxy-D-mannitol 6-phosphate (CM6P) in peak IV, as established after dephosphorylation by the relative rates of oxidation by periodate and by gas chromatographic retention times of the acetates. Analogous methodology has been used to synthesize the diastereomeric 2-carboxy-hexitol 1-phosphates (CG1P and CM1P) and their lactones from D-fructose 1-phosphate. The four carboxylates inhibit ribulose bisphosphate carboxylase/oxygenase from spinach or Pseudomonas oxalaticus in the following decreasing order of potency: CG6P, CM6P, CG1P, CM1P. The inhibition pattern suggests that the binding of the 5-phosphate moiety of the intermediate in the reaction catalyzed by ribulose bisphosphate carboxylase/oxygenase may be stronger by an order of magnitude than the binding of the 1-phosphate group.  相似文献   

18.
19.
B. Ranty  G. Cavalie 《Planta》1982,155(5):388-391
Extracts from sunflower leaves possess a high ribulose-1,5-bisphosphate (RuBP) carboxylase capacity but this enzyme activity is not stable. A purification procedure, developed with preservation of carboxylase activity by MgSO4, yielded purified RuBP carboxylase with high specific activity (40 nkat mg-1 protein). Measurement of kinetic parameters showed high Km values (RuBP, HCO 3 - ) and high Vmax of the reaction catalyzed by this sunflower enzyme; the results are compared with those obtained for soybean carboxylase. Enzyme characteristics are discussed in relation to stabilization and activation procedures and to the high photosynthesis rates of this C3 species.  相似文献   

20.
Summary Chloroplasts of many species of hornworts (Anthocerotae) have a structure that resembles the pyrenoid of green algae but whether these two structures are homologous has not been determined. We utilized immunogold labelling on thin sections to determine the distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the major protein of algal pyrenoids, in sixteen hornwort species with and without pyrenoids. Several species (Phaeoceros laevis, Anthoceros punctatus, A. formosae, A. laminiferus, Folioceros fuciformis, Folioceros sp.,Dendroceros tubercularis, D. japonicus, D. validus, Notothylas orbicularis, N. temperata, andSpaerosporoceros adscendens) have uniplastidic (or primarily uniplastidic) cells with large prominent multiple pyrenoids. In all of these species, the labelling is found exclusively in the pyrenoid and, with the exception of theFolioceros, Dendroceros, andNotothylas species, the labelling is randomly distributed throughout the pyrenoid. In the exceptional species, the pyrenoids have prominent pyrenoglobuli or other inclusions that are unlabelled. InMegaceros flagellaris andM. longispirus, the cells are multiplastidic (with the exception of the apical cell and some epidermal cells) and the chloroplasts lack pyrenoids.Anthoceros fusiformis andPhaeoceros coriaceus have primarily uniplastidic cells but the chloroplasts lack pyrenoids; only an area of stroma in the center of the plastid devoid of starch, reminiscent of a pyrenoid, is found. In all of the species lacking pyrenoids, RuBisCo is found throughout the stroma, including the stromal spaces made by the so-called channel thylakoids. No preferential accumulation of RuBisCo is found in the pyrenoid-like region inA. fusiformis andP. coriaceus. These data indicate that 1) the hornwort pyrenoid is homologous to algal pyrenoids in the presence of RuBisCo; 2) that at least some of the RuBisCo in the pyrenoid must represent an active form of the enzyme; and 3) that, in the absence of pyrenoids, the RuBisCo is distributed throughout the stroma, as in higher plants.Abbreviations RuBisCo ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号