首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently demonstrated that the activation of ceramide kinase (CERK) and the formation of its product, ceramide 1-phosphate (C1P), are necessary for the degranulation pathway in mast cells and that the kinase activity of this enzyme is completely dependent on the intracellular concentration of Ca(2+) (Mitsutake, S., Kim, T.-J., Inagaki, Y., Kato, M., Yamashita, T., and Igarashi, Y. (2004) J. Biol. Chem. 279, 17570-17577). Despite the demonstrated importance of Ca(2+) as a regulator of CERK activity, there are no apparent binding domains in the enzyme and the regulatory mechanism has not been well understood. In the present study, we found that calmodulin (CaM) is involved in the Ca(2+)-dependent activation of CERK. The CaM antagonist W-7 decreased both CERK activity and intracellular C1P formation. Additionally, exogenously added CaM enhanced CERK activity even at low concentrations of Ca(2+). The CERK protein was co-immunoprecipitated with an anti-CaM antibody, indicating formation of intracellular CaM.CERK complexes. An in vitro CaM binding assay also demonstrated Ca(2+)-dependent binding of CaM to CERK. These results strongly suggest that CaM acts as a Ca(2+) sensor for CERK. Furthermore, a CaM binding assay using various mutants of CERK revealed that the binding site of CERK is located within amino acids 422-435. This region appears to include a type 1-8-14B CaM binding motif and is predicted to form an amphipathic helical wheel, which is utilized in CaM recognition. The expression of a deletion mutant of CERK that contained the CaM binding domain but lost CERK activity inhibited the Ca(2+)-dependent C1P formation. These results suggest that this domain could saturate the CaM and hence block Ca(2+)-dependent activation of CERK. Finally, we reveal that in mast cell degranulation CERK acts downstream of CaM, similar to CaM-dependent protein kinase II, which had been assumed to be the main target of CaM in mast cells.  相似文献   

2.
Calmodulin (CaM) inhibits the skeletal muscle ryanodine receptor-1 (RyR1) and cardiac muscle RyR2 at micromolar Ca(2+) but activates RyR1 and inhibits RyR2 at submicromolar Ca(2+) by binding to a single, highly conserved CaM-binding site. To identify regions responsible for the differential regulation of RyR1 and RyR2 by CaM, we generated chimeras encompassing and flanking the CaM-binding domain. We found that the exchange of the N- and C-terminal flanking regions differentially affected RyR1 and RyR2. A RyR1/RyR2 chimera with an N-terminal flanking RyR2 substitution (RyR2 amino acid (aa) 3537-3579) was activated by CaM in single channel measurements at both submicromolar and micromolar Ca(2+). A RyR2/RyR1 chimera with a C-terminal flanking the 86-amino acid RyR1 substitution (RyR1 aa 3640-3725) bound (35)S-CaM but was not inhibited by CaM at submicromolar Ca(2+). In this region, five non-conserved amino acid residues (RyR1 aa 3680 and 3682-3685 and RyR2 aa 3647 and 3649-3652) differentially affect RyR helical probability. Substitution of the five amino acid residues in RyR1 with those of RyR2 showed responses to CaM comparable with wild type RyR1. In contrast, substitution of the five amino acid residues in RyR2 with those of RyR1 showed loss of CaM inhibition, whereas substitution of the five RyR2 sequence residues in the RyR2 chimera containing the RyR1 calmodulin-binding domain and C-flanking sequence restored wild type RyR2 inhibition by CaM at submicromolar Ca(2+). The results suggest that different regions are involved in CaM modulation of RyR1 and RyR2. They further suggest that five non-conserved amino acids in the C-terminal region flanking the CaM-binding domain have a key role in CaM inhibition of RyR2.  相似文献   

3.
4.
Intracellular Ca(2+) inhibits voltage-gated potassium channels of the ether à go-go (EAG) family. To identify the underlying molecular mechanism, we expressed the human version hEAG1 in XENOPUS: oocytes. The channels lost Ca(2+) sensitivity when measured in cell-free membrane patches. However, Ca(2+) sensitivity could be restored by application of recombinant calmodulin (CaM). In the presence of CaM, half inhibition of hEAG1 channels was obtained in 100 nM Ca(2+). Overlay assays using labelled CaM and glutathione S-transferase (GST) fusion fragments of hEAG1 demonstrated direct binding of CaM to a C-terminal domain (hEAG1 amino acids 673-770). Point mutations within this section revealed a novel CaM-binding domain putatively forming an amphipathic helix with both sides being important for binding. The binding of CaM to hEAG1 is, in contrast to Ca(2+)-activated potassium channels, Ca(2+) dependent, with an apparent K(D) of 480 nM. Co-expression experiments of wild-type and mutant channels revealed that the binding of one CaM molecule per channel complex is sufficient for channel inhibition.  相似文献   

5.
Regulatory mechanisms of rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) were probed using a synthetic peptide (CaMK-(281-309] corresponding to residues 281-309 (alpha-subunit) which contained the calmodulin (CaM)-binding and inhibitory domains and also the initial autophosphorylation site (Thr286). Kinetic analyses indicated that inhibition of a completely Ca2+/CaM-independent form of CaM-kinase II by CaMK-(281-309) was noncompetitive with respect to peptide substrate (syntide-2) but was competitive with respect to ATP. Interaction of CaMK-(281-309) with the ATP-binding site was independently confirmed since inactivation of proteolyzed CaM-kinase II by phenylglyoxal (t1/2 = 7 min) was blocked by ATP analog plus Mg2+ or by CaMK-(281-309). In the presence of Ca2+/CaM, CaMK-(281-309) no longer protected against phenylglyoxal inactivation, consistent with our previous observations (Colbran, R.J., Fong, Y.-L., Schworer, C.M., and Soderling, T.R. (1988) J. Biol. Chem. 263, 18145-18151) that binding of Ca2+/CaM to CaMK-(281-309) 1) blocks its inhibitory property, and 2) enhances its phosphorylation at Thr 286. The present study also showed that phosphorylation of CaMK-(281-309) decreased its inhibitory potency at least 10-fold without affecting its Ca2+/CaM-binding ability. Thus, CaM-kinase II is inactive in the absence of Ca2+/CaM because an inhibitory domain within residues 281-309 interacts with the catalytic domain and blocks ATP binding. Autophosphorylation of Thr286 results in a Ca2+/CaM-independent form of the kinase by disrupting the inhibitory interaction with the catalytic domain.  相似文献   

6.
Two synthetic peptides containing the previously identified calmodulin (CaM)-binding domain of Ca2+/CaM-dependent protein kinase II (CaM-kinase II) (residues 296-309, Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R., and Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195) were phosphorylated by Ca2+/CaM-independent forms of the kinase. In the presence of EGTA, CaMK-(290-309) was phosphorylated exclusively on threonine residues (Km = 13 microM; Vmax = 211 nmol/min/mg). When the phosphorylated product was analyzed by reversed-phase high performance liquid chromatography (HPLC) two radioactive peaks were resolved. The first peak contained CaMK-(290-309) phosphorylated on Thr306, whereas the second peak contained CaMK-(290-309) phosphorylated on Thr305. However, under the same conditions CaMK-(294-319) was phosphorylated predominantly (approximately 70%) on serine residues (Km = 23 microM; Vmax = 99 nmol/min/mg) and HPLC analysis revealed a single major radioactive peak predominantly (more than 90%) phosphorylated at Ser314. Phosphorylation of both peptides was completely blocked in the presence of Ca2+ and a stoichiometric amount of CaM. Samples of each phosphorylated peptide were tested for CaM-binding ability by two procedures and compared to the nonphosphorylated peptides. Phosphorylation of either Thr305 or Thr306 greatly reduced the interaction between CaMK-(290-309) and CaM, whereas phosphorylation of Ser314 did not affect the ability of CaMK-(294-319) to bind CaM. These results indicate that Thr305 and/or Thr306 may be the Ca2+/CaM-independent autophosphorylation site(s) responsible for the loss of ability of CaM-kinase II to bind and be activated by Ca2+/CaM (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R., J. Biol. Chem. 262, 8051-8055).  相似文献   

7.
In vitro protein binding assays identified two distinct calmodulin (CaM) binding sites within the NH(2)-terminal 30-kDa domain of erythrocyte protein 4.1 (4.1R): a Ca(2+)-independent binding site (A(264)KKLWKVCVEHHTFFRL) and a Ca(2+)-dependent binding site (A(181)KKLSMYGVDLHKAKDL). Synthetic peptides corresponding to these sequences bound CaM in vitro; conversely, deletion of these peptides from a 30-kDa construct reduced binding to CaM. Thus, 4.1R is a unique CaM-binding protein in that it has distinct Ca(2+)-dependent and Ca(2+)-independent high affinity CaM binding sites. CaM bound to 4.1R at a stoichiometry of 1:1 both in the presence and absence of Ca(2+), implying that one CaM molecule binds to two distinct sites in the same molecule of 4.1R. Interactions of 4.1R with membrane proteins such as band 3 is regulated by Ca(2+) and CaM. While the intrinsic affinity of the 30-kDa domain for the cytoplasmic tail of erythrocyte membrane band 3 was not altered by elimination of one or both CaM binding sites, the ability of Ca(2+)/CaM to down-regulate 4. 1R-band 3 interaction was abrogated by such deletions. Thus, regulation of protein 4.1 binding to membrane proteins by Ca(2+) and CaM requires binding of CaM to both Ca(2+)-independent and Ca(2+)-dependent sites in protein 4.1.  相似文献   

8.
Calmodulin (CaM) activates the skeletal muscle ryanodine receptor (RyR1) at nanomolar Ca(2+) concentrations but inhibits it at micromolar Ca(2+) concentrations, indicating that binding of Ca(2+) to CaM may provide a molecular switch for modulating RyR1 channel activity. To directly examine the Ca(2+) sensitivity of RyR1-complexed CaM, we used an environment-sensitive acrylodan adduct of CaM. The resulting (ACR)CaM probe displayed high-affinity binding to, and Ca(2+)-dependent regulation of, RyR1 similar to that of unlabeled wild-type (WT) CaM. Upon addition of Ca(2+), (ACR)CaM exhibited a substantial (>50%) decrease in fluorescence (K(Ca) = 2.7 +/- 0.8 microM). A peptide derived from the RyR1 CaM binding domain (RyR1(3614)(-)(43)) caused an even more pronounced Ca(2+)-dependent fluorescence decrease, and a >or=10-fold leftward shift in its K(Ca) (0.2 +/- 0.1 microM). In the presence of intact RyR1 channels in SR vesicles, (ACR)CaM fluorescence spectra were distinct from those in the presence of RyR1(3614)(-)(43), although a Ca(2+)-dependent decrease in fluorescence was still observed. The K(Ca) for (ACR)CaM fluorescence in the presence of SR (0.8 +/- 0.4 microM) was greater than in the presence of RyR1(3614)(-)(43) but was consistent with functional determinations showing the conversion of (ACR)CaM from channel activator (apoCaM) to inhibitor (Ca(2+)CaM) at Ca(2+) concentrations between 0.3 and 1 microM. These results indicate that binding to RyR1 targets evokes significant changes in the CaM structure and Ca(2+) sensitivity (i.e., CaM tuning). However, changes resulting from binding of CaM to the full-length, tetrameric channels are clearly distinct from changes caused by the RyR1-derived peptide. We suggest that the Ca(2+) sensitivity of CaM when in complex with full-length channels may be tuned to respond to physiologically relevant changes in Ca(2+).  相似文献   

9.
To clarify the role of the autoinhibitory insert in the endothelial (eNOS) and neuronal (nNOS) nitric-oxide synthases, the insert was excised from nNOS and chimeras with its reductase domain; the eNOS and nNOS inserts were swapped and put into the normally insertless inducible (iNOS) isoform and chimeras with the iNOS reductase domain; and an RRKRK sequence in the insert suggested by earlier peptide studies to be important (Salerno, J. C., Harris, D. E., Irizarry, K., Patel, B., Morales, A. J., Smith, S. M., Martasek, P., Roman, L. J., Masters, B. S., Jones, C. L., Weissman, B. A., Lane, P., Liu, Q., and Gross, S. S. (1997) J. Biol. Chem. 272, 29769-29777) was mutated. Insertless nNOS required calmodulin (CaM) for normal NOS activity, but the Ca(2+) requirement for this activity was relaxed. Furthermore, insert deletion enhanced CaM-free electron transfer within nNOS and chimeras with the nNOS reductase, emphasizing the involvement of the insert in modulating electron transfer. Swapping the nNOS and eNOS inserts gave proteins with normal NOS activities, and the nNOS insert acted normally in raising the Ca(2+) dependence when placed in eNOS. Insertion of the eNOS insert into iNOS and chimeras with the iNOS reductase domain significantly lowered NOS activity, consistent with inhibition of electron transfer by the insert. Mutation of the eNOS RRKRK to an AAAAA sequence did not alter the eNOS Ca(2+) dependence but marginally inhibited electron transfer. The salt dependence suggests that the insert modulates electron transfer within the reductase domain prior to the heme/reductase interface. The results clarify the role of the reductase insert in modulating the Ca(2+) requirement, electron transfer rate, and overall activity of nNOS and eNOS.  相似文献   

10.
Intracellular cell signaling cascades of protozoan parasite Plasmodium falciparum are not clearly understood. We have reported previously (Kumar, A., Vaid, A., Syin, C., and Sharma, P. (2004) J. Biol. Chem. 279, 24255-24264) the identification and characterization of a protein kinase B-like enzyme in P. falciparum (PfPKB). PfPKB lacks the phosphoinositide-interacting pleckstrin homology domain present in mammalian protein kinase B. Therefore, the mechanism of PfPKB regulation was expected to be different from that of the host and had remained unknown. We have identified calmodulin (CaM) as the regulator of PfPKB activity. A CaM binding domain was mapped in the N-terminal region of PfPKB. CaM, in a calcium-dependent manner, interacts with this domain and activates PfPKB. CaM associates with PfPKB in the parasite and regulates its activity. Furthermore phospholipase C acts as an upstream regulator of this cascade as it facilitates the release of calcium from intracellular stores. This is one of the first multicomponent signaling pathways to be dissected in the malaria parasite.  相似文献   

11.
Pilling C  Landgraf KE  Falke JJ 《Biochemistry》2011,50(45):9845-9856
During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.  相似文献   

12.
The three-dimensional structure of the complex between calmodulin (CaM) and a peptide corresponding to the N-terminal portion of the CaM-binding domain of the plasma membrane calcium pump, the peptide C20W, has been solved by heteronuclear three-dimensional nuclear magnetic resonance (NMR) spectroscopy. The structure calculation is based on a total of 1808 intramolecular NOEs and 49 intermolecular NOEs between the peptide C20W and calmodulin from heteronuclear-filtered NOESY spectra and a half-filtered experiment, respectively. Chemical shift differences between free Ca(2+)-saturated CaM and its complex with C20W as well as the structure calculation reveal that C20W binds solely to the C-terminal half of CaM. In addition, comparison of the methyl resonances of the nine assigned methionine residues of free Ca(2+)-saturated CaM with those of the CaM/C20W complex revealed a significant difference between the N-terminal and the C-terminal domain; i.e., resonances in the N-terminal domain of the complex were much more similar to those reported for free CaM in contrast to those in the C-terminal half which were significantly different not only from the resonances of free CaM but also from those reported for the CaM/M13 complex. As a consequence, the global structure of the CaM/C20W complex is unusual, i.e., different from other peptide calmodulin complexes, since we find no indication for a collapsed structure. The fine modulation in the peptide protein interface shows a number of differences to the CaM/M13 complex studied by Ikura et al. [Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A. (1992) Science 256, 632-638]. The unusual binding mode to only the C-terminal half of CaM is in agreement with the biochemical observation that the calcium pump can be activated by the C-terminal half of CaM alone [Guerini, D., Krebs, J., and Carafoli, E. (1984) J. Biol. Chem. 259, 15172-15177].  相似文献   

13.
Type I adenylyl cyclase is a neurospecific enzyme that is stimulated by Ca2+ and calmodulin (CaM). This enzyme couples the Ca2+ and cyclic AMP (cAMP) regulatory systems in neurons, and it may play an important role for some forms of synaptic plasticity. Mutant mice lacking type I adenylyl cyclase show deficiencies in spatial memory and altered long-term potentiation (Z. Wu, S. A. Thomas, Z. Xia, E. C. Villacres, R. D. Palmiter, and D. R. Storm, Proc. Natl. Acad. Sci. USA 92:220-224, 1995). Although type I adenylyl cyclase is synergistically stimulated by Ca2+ and G-protein-coupled receptors in vivo, very little is known about mechanisms for inhibition of the enzyme. Here, we report that type I adenylyl cyclase is inhibited by CaM kinase IV in vivo. Expression of constitutively active or wild-type CaM kinase IV inhibited Ca2+ stimulation of adenylyl cyclase activity without affecting basal or forskolin-stimulated activity. Type I adenylyl cyclase has two CaM kinase IV consensus phosphorylation sequences near its CaM binding domain at Ser-545 and Ser-552. Conversion of either serine to alanine by mutagenesis abolished CaM kinase IV inhibition of adenylyl cyclase. This suggests that the activity of this enzyme may be directly inhibited by CaM kinase IV phosphorylation. Type VIII adenylyl cyclase, another enzyme stimulated by CaM, was not inhibited by CaM kinase II or IV. We propose that CaM kinase IV may function as a negative feedback regulator of type I adenylyl cyclase and that CaM kinases may regulate cAMP levels in some cells.  相似文献   

14.
Landgraf KE  Pilling C  Falke JJ 《Biochemistry》2008,47(47):12260-12269
The protein kinase AKT1 regulates multiple signaling pathways essential for cell function. Its N-terminal PH domain (AKT1 PH) binds the rare signaling phospholipid phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)], resulting in plasma membrane targeting and phosphoactivation of AKT1 by a membrane-bound kinase. Recently, it was discovered that the Glu17Lys mutation in the AKT1 PH domain is associated with multiple human cancers. This mutation constitutively targets the AKT1 PH domain to the plasma membrane by an unknown mechanism, thereby promoting constitutive AKT1 activation and oncogenesis. To elucidate the molecular mechanism underlying constitutive plasma membrane targeting, this work compares the membrane docking reactions of the isolated wild-type and E17K AKT1 PH domains. In vitro studies reveal that the E17K mutation dramatically increases the affinity for the constitutive plasma membrane lipid PI(4,5)P(2). The resulting PI(4,5)P(2) equilibrium affinity is indistinguishable from that of the standard PI(4,5)P(2) sensor, PLCdelta1 PH domain. Kinetic studies indicate that the effects of E17K on PIP lipid binding arise largely from electrostatic modulation of the dissociation rate. Membrane targeting analysis in live cells confirms that the constitutive targeting of E17K AKT1 PH to plasma membrane, like PLCdelta1 PH, stems from PI(4,5)P(2) binding. Overall, the evidence indicates that the molecular mechanism underlying E17K oncogenesis is a broadened target lipid selectivity that allows high-affinity binding to PI(4,5)P(2). Moreover, the findings strongly implicate the native Glu17 side chain as a key element of PIP lipid specificity in the wild-type AKT1 PH domain. Other PH domains may employ an analogous anionic residue to control PIP specificity.  相似文献   

15.
Smooth muscle myosin light chain kinase (smMLCK) is a Ca(2+)-calmodulin (CaM)-dependent enzyme that phosphorylates the 20-kDa light chains of myosin. In a previous study (Bagchi, I.C., Kemp, B.E., and Means, A.R. (1989) J. Biol. Chem. 264, 15843-15849), we expressed in bacteria a 40-kDa fragment of smMLCK that displayed Ca(2+)-CaM-regulated catalytic activity. Initial mutagenesis experiments indicated that Gly811 and Arg812 were important for CaM-dependent activation of this 40-kDa enzyme. We have now carried out site-directed mutagenesis within the CaM-binding domain (Ser787 to Leu813) of this enzyme to identify amino acids that are critical for CaM binding and activation. Our studies reveal that the individual mutation of several hydrophobic amino acid residues such as Leu813, Ile810, and Trp800 and the glycine residue Gly804 also resulted in a severe decrease in or complete loss of CaM binding and activation of smMLCK. The hydrophobic residue (Trp800) and the basic residue (Arg812), both of which are mandatory for CaM binding to smMLCK, occur in analogous positions within the CaM-binding domain of a number of CaM-regulated enzymes. We conclude from these results that CaM binding by smMLCK is determined by an interplay of specific hydrophobic and electrostatic interactions which appear to be conserved among various target enzymes of CaM.  相似文献   

16.
Both normal chicken calmodulin (CaM) and a CaM-like mutant protein have been expressed in bacteria, isolated and evaluated with respect to several physical and biological properties. The mutant CaM is derived from a CaM-like gene that lacks intervening sequences and probably evolved from a CaM-processed gene (Stein, J. P., Munjaal, R. P., Lagacé, L., Lai, E. C., O'Malley, B. W., and Means, A. R. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 6485-6489). The mutant CaM protein contains 16 of the 19 amino acids encoded by the CaM-like gene. Normal chicken CaM produced in bacteria is identical to rat CaM by all criteria tested except that it is not trimethylated. The protein product of the CaM-like gene has been termed CaML and exhibits properties which are very similar to CaM despite the presence of 16 amino acid substitutions. CaML binds Ca2+ as evidenced by Ca2+-dependent binding to phenothiazine- and phenyl-Sepharose affinity resins and a Ca2+-dependent electrophoretic mobility shift which is similar to but distinct from CaM. CaML cross-reacts with a monospecific CaM antibody and has an immunodilution curve which is identical to bacterially synthesized CaM. Finally, CaML can maximally activate rat brain phosphodiesterase but with altered kinetic parameters as compared to CaM. These data suggest that the nucleotide substitutions in the putative CaM processed gene are not random but are selected to retain CaM-like functions in the encoded protein. Such a mechanism may exist for other processed genes.  相似文献   

17.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

18.
Mori M  Konno T  Ozawa T  Murata M  Imoto K  Nagayama K 《Biochemistry》2000,39(6):1316-1323
The voltage-dependent sodium channel (VDSC) interacts with intracellular molecules to modulate channel properties and localizations in neuronal cells. To study protein interactions, we applied yeast two-hybrid screening to the cytoplasmic C-terminal domain of the main pore-forming alpha-subunit. We found a novel interaction between the C-terminal domain and calmodulin (CaM). By two-hybrid interaction assays, we specified the interaction site of VDSC in a C-terminal region, which is composed of 38 amino acid residues and contains both IQ-like and Baa motifs. Using a fusion protein of the C-terminal domain, we showed that interaction with CaM occurred in the presence and absence of Ca(2+). Two synthetic peptides, each covering the IQ-like (NaIQ) or the Baa motifs (NaBaa), were used to examine the binding property by a gel mobility shift assay. Although the NaIQ and NaBaa sequences are overlapped, NaBaa binds only to Ca(2+)-bound Ca(2+)CaM, whereas NaIQ binds to both Ca(2+)CaM and Ca(2+)-free apoCaM. Fluorescence spectroscopy of dansylated CaM showed Ca(2+)-dependent spectral changes not only for NaBaa.CaM but also for NaIQ.CaM. The results, taken together with other results, indicate that whereas the NaBaa.CaM complex is formed in a Ca(2+)-dependent manner, the NaIQ.CaM complex has two conformational states, distinct with respect to the peptide binding site and the CaM conformation, depending on the Ca(2+) concentration. These observations suggest the possibility that VDSC is functionally modulated through the direct CaM interaction and the Ca(2+)-dependent conformational transition of the complex.  相似文献   

19.
Calmodulin (CaM) is the major Ca2+ sensor in eukaryotic cells. It consists of four EF-hand Ca2+ binding motifs, two in its N-terminal domain and two in its C-terminal domain. Through a negative feedback loop, CaM inhibits Ca2+ influx through N-methyl-D-aspartate-type glutamate receptors in neurons by binding to the C0 region in the cytosolic tail of the NR1 subunit. Ca2+ -depleted (apo)CaM is pre-associated with a variety of ion channels for fast and effective regulation of channel activities upon Ca2+ influx. Using the NR1 C0 region for fluorescence and circular dichroism spectroscopy studies we found that not only Ca2+ -saturated CaM but also apoCaM bound to NR1 C0. In vitro interaction assays showed that apoCaM also binds specifically to full-length NR1 solubilized from rat brain and to the complete C terminus of the NR1 splice form that contains the C0 plus C2' domain. The Ca2+ -independent interaction of CaM was also observed with the isolated C-but not N-terminal fragment of calmodulin in the independent spectroscopic assays. Fluorescence polarization studies indicated that apoCaM associated via its C-terminal domain with NR1 C0 in an extended conformation and collapsed to adopt a more compact conformation of faster rotational mobility in its complex with NR1 C0 upon addition of Ca2+. Our results indicate that apoCaM is associated with NR1 and that the complex of CaM bound to NR1 C0 undergoes a dramatic conformational change when Ca2+ binds to CaM.  相似文献   

20.
Like that of the neuronal nitric oxide synthase (nNOS), the binding of Ca(2+)-bound calmodulin (CaM) also regulates the activity of the inducible isoform (iNOS). However, the role of each of the four Ca(2+)-binding sites of CaM in the activity of iNOS is unclear. Using a series of single-point mutants of Drosophila melanogaster CaM, the effect that mutating each of the Ca(2+)-binding sites plays in the transfer of electrons within iNOS has been examined. The same Glu (E) to Gln (Q) mutant series of CaM used previously [Stevens-Truss, R., Beckingham, K., and Marletta, M. A. (1997) Biochemistry 36, 12337-12345] to study the role of the Ca(2+)-binding sites in the activity of nNOS was used for these studies. We demonstrate here that activity of iNOS is dependent on Ca(2+) being bound to sites II (B2Q) and III (B3Q) of CaM. Nitric oxide ((*)NO) producing activity (as measured using the hemoglobin assay) of iNOS bound to the B2Q and B3Q CaMs was found to be 41 and 43% of the wild-type activity, respectively. The site I (B1Q) and site IV (B4Q) CaM mutants only minimally affected (*)NO production (95 and 90% of wild-type activity, respectively). These results suggest that NOS isoforms, although all possessing a prototypical CaM binding sequence and requiring CaM for activity, interact with CaM differently. Moreover, iNOS activation by CaM, like nNOS, is not dependent on Ca(2+) being bound to all four Ca(2+)-binding sites, but has specific and distinct requirements. This novel information, in addition to helping us understand NOS, should aid in our understanding of CaM target activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号