首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency. The key findings are as follows: (i) The MDR protease exhibits decreased susceptibility to all nine HIV-1 protease inhibitors approved by the US Food and Drug Administration (FDA), among which darunavir and tipranavir are the most potent; (ii) the threonine 82 mutation on the protease greatly enhances drug resistance by altering the hydrophobicity of the binding pocket; (iii) darunavir or tipranavir binding facilitates closure of the wide-open flaps of the MDR protease; and (iv) the remaining potency of tipranavir may be preserved by stabilizing the flaps in the inhibitor-protease complex while darunavir maintains its potency by preserving protein main chain hydrogen bonds with the flexible P2 group. These results could provide new insights into drug design strategies to overcome multi-drug resistance of HIV-1 protease variants.  相似文献   

2.
Tipranavir is a novel, nonpeptidic protease inhibitor of human immunodeficiency virus type 1 (HIV-1) with activity against clinical HIV-1 isolates from treatment-experienced patients. HIV-1 genotypic and phenotypic data from phase II and III clinical trials of tipranavir with protease inhibitor-experienced patients were analyzed to determine the association of protease mutations with reduced susceptibility and virologic response to tipranavir. Specific protease mutations were identified based on stepwise multiple-regression analyses of phase II study data sets. Validation included analyses of phase III study data sets to determine if the same mutations would be selected and to assess how these mutations contribute to multiple-regression models of tipranavir-related phenotype and of virologic response. A tipranavir mutation score was developed from these analyses, which consisted of a unique string of 16 protease positions and 21 mutations (10V, 13V, 20M/R/V, 33F, 35G, 36I, 43T, 46L, 47V, 54A/M/V, 58E, 69K, 74P, 82L/T, 83D, and 84V). HIV-1 isolates displaying an increasing number of these tipranavir resistance-associated mutations had a reduced phenotypic susceptibility and virologic response to tipranavir. Regression models for predicting virologic response in phase III trials revealed that each point in the tipranavir score was associated with a 0.16-log10 copies/ml-lower virologic response to tipranavir at week 24 of treatment. A lower number of points in the tipranavir score and a greater number of active drugs in the background regimen were predictive of virologic success. These analyses demonstrate that the tipranavir mutation score is a potentially valuable tool for predicting the virologic response to tipranavir in protease inhibitor-experienced patients.  相似文献   

3.
One of the most serious side effects associated with the therapy of HIV-1 infection is the appearance of viral strains that exhibit resistance to protease inhibitors. The active site mutant V82F/I84V has been shown to lower the binding affinity of protease inhibitors in clinical use. To identify the origin of this effect, we have investigated the binding thermodynamics of the protease inhibitors indinavir, ritonavir, saquinavir, and nelfinavir to the wild-type HIV-1 protease and to the V82F/I84V resistant mutant. The main driving force for the binding of all four inhibitors is a large positive entropy change originating from the burial of a significant hydrophobic surface upon binding. At 25 degrees C, the binding enthalpy is unfavorable for all inhibitors except ritonavir, for which it is slightly favorable (-2.3 kcal/mol). Since the inhibitors are preshaped to the geometry of the binding site, their conformational entropy loss upon binding is small, a property that contributes to their high binding affinity. The V82F/I84V active site mutation lowers the affinity of the inhibitors by making the binding enthalpy more positive and making the entropy change slightly less favorable. The effect on the enthalpy change is, however, the major one. The predominantly enthalpic effect of the V82F/I84V mutation is consistent with the idea that the introduction of the bulkier Phe side chain at position 82 and the Val side chain at position 84 distort the binding site and weaken van der Waals and other favorable interactions with inhibitors preshaped to the wild-type binding site. Another contribution of the V82F/I84V to binding affinity originates from an increase in the energy penalty associated with the conformational change of the protease upon binding. The V82F/I84V mutant is structurally more stable than the wild-type protease by about 1.4 kcal/mol. This effect, however, affects equally the binding affinity of substrate and inhibitors.  相似文献   

4.
Ohtaka H  Schön A  Freire E 《Biochemistry》2003,42(46):13659-13666
The appearance of viral strains that are resistant to protease inhibitors is one of the most serious problems in the chemotherapy of HIV-1/AIDS. The most pervasive drug-resistant mutants are those that affect all inhibitors in clinical use. In this paper, we have characterized a multiple-drug-resistant mutant of the HIV-1 protease that affects indinavir, nelfinavir, saquinavir, ritonavir, amprenavir, and lopinavir. This mutant (MDR-HM) contains six amino acid mutations (L10I/M46I/I54V/V82A/I84V/L90M) located within and outside the active site of the enzyme. Microcalorimetric and enzyme kinetic measurements indicate that this mutant lowers the affinity of all inhibitors by 2-3 orders of magnitude. By comparison, the multiiple-drug-resistant mutant only increased the K(m) of the substrate by a factor of 2, indicating that the substrate is able to adapt to the changes caused by the mutations and maintain its binding affinity. To understand the origin of resistance, three submutants containing mutations in specific regions were also studied, i.e., the active site (V82A/I84V), flap region (M46I/I54V), and dimerization region (L10I/L90M). None of these sets of mutations by themselves lowered the affinity of inhibitors by more than 1 order of magnitude, and additionally, the sum of the effects of each set of mutations did not add up to the overall effect, indicating the presence of cooperative effects. A mutant containing only the four active site mutations (V82A/I84V/M46I/I54V) only showed a small cooperative effect, suggesting that the mutations at the dimer interface (L10I/L90M) play a major role in eliciting a cooperative response. These studies demonstrate that cooperative interactions contribute an average of 1.2 +/- 0.7 kcal/mol to the overall resistance, most of the cooperative effect (0.8 +/- 0.7 kcal/mol) being mediated by the mutations at the dimerization interface. Not all inhibitors in clinical use are affected the same by long-range cooperative interactions between mutations. These interactions can amplify the effects of individual mutations by factors ranging between 2 and 40 depending on the inhibitor. Dissection of the energetics of drug resistance into enthalpic and entropic components provides a quantitative account of the inhibitor response and a set of thermodynamic guidelines for the design of inhibitors with a lower susceptibility to this type of mutations.  相似文献   

5.
Amprenavir is one of six protease inhibitors presently approved for clinical use in the therapeutic treatment of AIDS. Biochemical and clinical studies have shown that, unlike other inhibitors, Amprenavir is severely affected by the protease mutation I50V, located in the flap region of the enzyme. TMC-126 is a second-generation inhibitor, chemically related to Amprenavir, with a reported extremely low susceptibility to existing resistant mutations including I50V. In this paper, we have studied the thermodynamic and molecular origin of the response of these two inhibitors to the I50V mutation and the double active-site mutation V82F/I84V that affects all existing clinical inhibitors. Amprenavir binds to the wild-type HIV-1 protease with high affinity (5.0 x 10(9) M(-1) or 200 pM) in a process equally favored by enthalpic and entropic contributions. The mutations I50V and V82F/I84V lower the binding affinity of Amprenavir by a factor of 147 and 104, respectively. TMC-126, on the other hand, binds to the wild-type protease with extremely high binding affinity (2.6 x 10(11) M(-1) or 3.9 pM) in a process in which enthalpic contributions overpower entropic contributions by almost a factor of 4. The mutations I50V and V82F/I84V lower the binding affinity of TMC-126 by only a factor of 16 and 11, respectively, indicating that the binding affinity of TMC-126 to the drug-resistant mutants is still higher than the affinity of Amprenavir to the wild-type protease. Analysis of the data for TMC-126 and KNI-764, another second-generation inhibitor, indicates that their low susceptibility to mutations is caused by their ability to compensate for the loss of interactions with the mutated target by a more favorable entropy of binding.  相似文献   

6.
KNI-764 is a powerful HIV-1 protease inhibitor with a reported low susceptibility to the effects of protease mutations commonly associated with drug resistance. In this paper the binding thermodynamics of KNI-764 to the wild-type and drug-resistant mutant V82F/I84V are presented and the results compared to those obtained with existing clinical inhibitors. KNI-764 binds to the wild-type HIV-1 protease with very high affinity (3.1 x 10(10) M(-1) or 32 pM) in a process strongly favored by both enthalpic and entropic contributions to the Gibbs energy of binding (Delta G = -RTlnK(a)). When compared to existing clinical inhibitors, the binding affinity of KNI-764 is about 100 fold higher than that of indinavir, saquinavir, and nelfinavir, but comparable to that of ritonavir. Unlike the existing clinical inhibitors, which bind to the protease with unfavorable or only slightly favorable enthalpy changes, the binding of KNI-764 is strongly exothermic (-7.6 kcal/mol). The resistant mutation V82F/I84V lowers the binding affinity of KNI-764 26-fold, which can be accounted almost entirely by a less favorable binding enthalpy to the mutant. Since KNI-764 binds to the wild type with extremely high affinity, even after a 26-fold decrease, it still binds to the resistant mutant with an affinity comparable to that of other inhibitors against the wild type. These results indicate that the effectiveness of this inhibitor against the resistant mutant is related to two factors: extremely high affinity against the wild type achieved by combining favorable enthalpic and entropic interactions, and a mild effect of the protease mutation due to the presence of flexible structural elements at critical locations in the inhibitor molecule. The conclusions derived from the HIV-1 protease provide important thermodynamic guidelines that can be implemented in general drug design strategies.  相似文献   

7.
The efficacy of HIV-1 protease inhibition therapies is often compromised by the appearance of mutations in the protease molecule that lower the binding affinity of inhibitors while maintaining viable catalytic activity and substrate affinity. The V82F/I84V double mutation is located within the binding site cavity and affects all protease inhibitors in clinical use. KNI-764, a second-generation inhibitor currently under development, maintains significant potency against this mutation by entropically compensating for enthalpic losses, thus minimizing the loss in binding affinity. KNI-577 differs from KNI-764 by a single functional group critical to the inhibitor response to the protease mutation. This single difference changes the response of the two inhibitors to the mutation by one order of magnitude. Accordingly, a structural understanding of the inhibitor response will provide important guidelines for the design of inhibitors that are less susceptible to mutations conveying drug resistance. The structures of the two compounds bound to the wild type and V82F/I84V HIV-1 protease have been determined by X-ray crystallography at 2.0 A resolution. The presence of two asymmetric functional groups, linked by rotatable bonds to the inhibitor scaffold, allows KNI-764 to adapt to the mutated binding site cavity more readily than KNI-577, with a single asymmetric group. Both inhibitors lose about 2.5 kcal/mol in binding enthalpy when facing the drug-resistant mutant protease; however KNI-764 gains binding entropy while KNI-577 loses binding entropy. The gain in binding entropy by KNI-764 accounts for its low susceptibility to the drug-resistant mutation. The heat capacity change associated with binding becomes more negative when KNI-764 binds to the mutant protease, consistent with increased desolvation. With KNI-577, the opposite effect is observed. Structurally, the crystallographic B factors increase for KNI-764 when it is bound to the drug-resistant mutant. The opposite is observed for KNI-577. Consistent with these observations, it appears that KNI-764 is able to gain binding entropy by a two-fold mechanism: it gains solvation entropy by burying itself deeper within the binding pocket and gains conformational entropy by losing interaction with the protease.  相似文献   

8.
The compound UIC-94017 (TMC-114) is a second-generation HIV protease inhibitor with improved pharmacokinetics that is chemically related to the clinical inhibitor amprenavir. UIC-94017 is a broad-spectrum potent inhibitor active against HIV-1 clinical isolates with minimal cytotoxicity. We have determined the high-resolution crystal structures of UIC-94017 in complexes with wild-type HIV-1 protease (PR) and mutant proteases PR(V82A) and PR(I84V) that are common in drug-resistant HIV. The structures were refined at resolutions of 1.10-1.53A. The crystal structures of PR and PR(I84V) with UIC-94017 ternary complexes show that the inhibitor binds to the protease in two overlapping positions, while the PR(V82A) complex had one ordered inhibitor. In all three structures, UIC-94017 forms hydrogen bonds with the conserved main-chain atoms of Asp29 and Asp30 of the protease. These interactions are proposed to be critical for the potency of this compound against HIV isolates that are resistant to multiple protease inhibitors. Other small differences were observed in the interactions of the mutants with UIC-94017 as compared to PR. PR(V82A) showed differences in the position of the main-chain atoms of residue 82 compared to PR structure that better accommodated the inhibitor. Finally, the 1.10A resolution structure of PR(V82A) with UIC-94017 showed an unusual distribution of electron density for the catalytic aspartate residues, which is discussed in relation to the reaction mechanism.  相似文献   

9.
The relative replicative fitness of human immunodeficiency virus type 1 (HIV-1) mutants selected by different protease inhibitors (PIs) in vivo was determined. Each mutant was compared to wild type (WT), NL4-3, in the absence of drugs by several methods, including clonal genotyping of cultures infected with two competing viral variants, kinetics of viral antigen production, and viral infectivity/virion particle ratios. A nelfinavir-selected protease D30N substitution substantially decreased replicative capacity relative to WT, while a saquinavir-selected L90M substitution moderately decreased fitness. The D30N mutant virus was also outcompeted by the L90M mutant in the absence of drugs. A major natural polymorphism of the HIV-1 protease, L63P, compensated well for the impairment of fitness caused by L90M but only slightly improved the fitness of D30N. Multiply substituted indinavir-selected mutants M46I/L63P/V82T/I84V and L10R/M46I/L63P/V82T/I84V were just as fit as WT. These results indicate that the mutations which are usually initially selected by nelfinavir and saquinavir, D30N and L90M, respectively, impair fitness. However, additional mutations may improve the replicative capacity of these and other drug-resistant mutants. Hypotheses based on the greater fitness impairment of the nelfinavir-selected D30N mutant are suggested to explain observations that prolonged responses to delayed salvage regimens, including alternate PIs, may be relatively common after nelfinavir failure.  相似文献   

10.
Drug-resistant mutants of HIV-1 protease limit the long-term effectiveness of current anti-viral therapy. In order to study drug resistance, the wild-type HIV-1 protease and the mutants R8Q, V32I, M46I, V82A, V82I, V82F, I84V, V32I/I84V and M46I/I84V were modeled with the inhibitors saquinavir and indinavir using the program AMMP. A new screen term was introduced to reproduce more correctly the electron distribution of atoms. The atomic partial charge was represented as a delocalized charge distribution instead of a point charge. The calculated protease-saquinavir interaction energies showed the highly significant correlation of 0.79 with free energy differences derived from the measured inhibition constants for all 10 models. Three different protonation states of indinavir were evaluated. The best indinavir model included a sulfate and gave a correlation coefficient of 0.68 between the calculated interaction energies and free energies from inhibition constants for nine models. The exception was R8Q with indinavir, probably due to differences in the solvation energy. No significant correlation was found using the standard molecular mechanics terms. The incorporation of the new screen correction resulted in better prediction of the effects of inhibitors on resistant protease variants and has potential for selecting more effective inhibitors for resistant virus.  相似文献   

11.
HIV-1 develops resistance to protease inhibitors predominantly by selecting mutations in the protease gene. Studies of resistant mutants of HIV-1 protease with single amino acid substitutions have shown a range of independent effects on specificity, inhibition, and stability. Four double mutants, K45I/L90M, K45I/V82S, D30N/V82S, and N88D/L90M were selected for analysis on the basis of observations of increased or decreased stability or enzymatic activity for the respective single mutants. The double mutants were assayed for catalysis, inhibition, and stability. Crystal structures were analyzed for the double mutants at resolutions of 2.2-1.2 A to determine the associated molecular changes. Sequence-dependent changes in protease-inhibitor interactions were observed in the crystal structures. Mutations D30N, K45I, and V82S showed altered interactions with inhibitor residues at P2/P2', P3/P3'/P4/P4', and P1/P1', respectively. One of the conformations of Met90 in K45I/L90M has an unfavorably close contact with the carbonyl oxygen of Asp25, as observed previously in the L90M single mutant. The observed catalytic efficiency and inhibition for the double mutants depended on the specific substrate or inhibitor. In particular, large variation in cleavage of p6(pol)-PR substrate was observed, which is likely to result in defects in the maturation of the protease from the Gag-Pol precursor and hence viral replication. Three of the double mutants showed values for stability that were intermediate between the values observed for the respective single mutants. D30N/V82S mutant showed lower stability than either of the two individual mutations, which is possibly due to concerted changes in the central P2-P2' and S2-S2' sites. The complex effects of combining mutations are discussed.  相似文献   

12.
The monomer-dimer equilibrium for the human immunodeficiency virus type 1 (HIV-1) protease has been investigated under physiological conditions. Dimer dissociation at pH 7.0 was correlated with a loss in beta-sheet structure and a lower degree of ANS binding. An autolysis-resistant mutant, Q7K/L33I/L63I, was used to facilitate sedimentation equilibrium studies at neutral pH where the wild-type enzyme is typically unstable in the absence of bound inhibitor. The dimer dissociation constant (KD) of the triple mutant was 5.8 microM at pH 7.0 and was below the limit of measurement (approximately 100 nM) at pH 4.5. Similar studies using the catalytically inactive D25N mutant yielded a KD value of 1.0 microM at pH 7.0. These values differ significantly from a previously reported value of 23 nM obtained indirectly from inhibitor binding measurements (Darke et al., 1994). We show that the discrepancy may result from the thermodynamic linkage between the monomer-dimer and inhibitor binding equilibria. Under conditions where a significant degree of monomer is present, both substrates and competitive inhibitors will shift the equilibrium toward the dimer, resulting in apparent increases in dimer stability and decreases in ligand binding affinity. Sedimentation equilibrium studies were also carried out on several drug-resistant HIV-1 protease mutants: V82F, V82F/I84V, V82T/I84V, and L90M. All four mutants exhibited reduced dimer stability relative to the autolysis-resistant mutant at pH 7.0. Our results indicate that reductions in drug affinity may be due to the combined effects of mutations on both dimer stability and inhibitor binding.  相似文献   

13.
The internal motions of proteins may serve as a "gate" in some systems, which controls ligand-protein association. This study applies Brownian dynamics simulations in a coarse-grained model to study the gated association rate constants of HIV-1 proteases and drugs. The computed gated association rate constants of three protease mutants, G48V/V82A/I84V/L90M, G48V, and L90M with three drugs, amprenavir, indinavir, and saquinavir, yield good agreements with experiments. The work shows that the flap dynamics leads to "slow gating". The simulations suggest that the flap flexibility and the opening frequency of the wild-type, the G48V and L90M mutants are similar, but the flaps of the variant G48V/V82A/I84V/L90M open less frequently, resulting in a lower gated rate constant. The developed methodology is fast and provides an efficient way to predict the gated association rate constants for various protease mutants and ligands.  相似文献   

14.
TMC114, a newly designed human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is extremely potent against both wild-type (wt) and multidrug-resistant (MDR) viruses in vitro as well as in vivo. Although chemically similar to amprenavir (APV), the potency of TMC114 is substantially greater. To examine the basis for this potency, we solved crystal structures of TMC114 complexed with wt HIV-1 protease and TMC114 and APV complexed with an MDR (L63P, V82T, and I84V) protease variant. In addition, we determined the corresponding binding thermodynamics by isothermal titration calorimetry. TMC114 binds approximately 2 orders of magnitude more tightly to the wt enzyme (K(d) = 4.5 x 10(-12) M) than APV (K(d) = 3.9 x 10(-10) M). Our X-ray data (resolution ranging from 2.2 to 1.2 A) reveal strong interactions between the bis-tetrahydrofuranyl urethane moiety of TMC114 and main-chain atoms of D29 and D30. These interactions appear largely responsible for TMC114's very favorable binding enthalpy to the wt protease (-12.1 kcal/mol). However, TMC114 binding to the MDR HIV-1 protease is reduced by a factor of 13.3, whereas the APV binding constant is reduced only by a factor of 5.1. However, even with the reduction in binding affinity to the MDR HIV protease, TMC114 still binds with an affinity that is more than 1.5 orders of magnitude tighter than the first-generation inhibitors. Both APV and TMC114 fit predominantly within the substrate envelope, a property that may be associated with decreased susceptibility to drug-resistant mutations relative to that of first-generation inhibitors. Overall, TMC114's potency against MDR viruses is likely a combination of its extremely high affinity and close fit within the substrate envelope.  相似文献   

15.
Atazanavir, which is marketed as REYATAZ, is the first human immunodeficiency virus type 1 (HIV-1) protease inhibitor approved for once-daily administration. As previously reported, atazanavir offers improved inhibitory profiles against several common variants of HIV-1 protease over those of the other peptidomimetic inhibitors currently on the market. This work describes the X-ray crystal structures of complexes of atazanavir with two HIV-1 protease variants, namely, (i) an enzyme optimized for resistance to autolysis and oxidation, referred to as the cleavage-resistant mutant (CRM); and (ii) the M46I/V82F/I84V/L90M mutant of the CRM enzyme, which is resistant to all approved HIV-1 protease inhibitors, referred to as the inhibitor-resistant mutant. In these two complexes, atazanavir adopts distinct bound conformations in response to the V82F substitution, which may explain why this substitution, at least in isolation, has yet to be selected in vitro or in the clinic. Because of its nearly symmetrical chemical structure, atazanavir is able to make several analogous contacts with each monomer of the biological dimer.  相似文献   

16.
The development of resistance to anti-retroviral drugs targeted against HIV is an increasing clinical problem in the treatment of HIV-1-infected individuals. Many patients develop drug-resistant strains of the virus after treatment with inhibitor cocktails (HAART therapy), which include multiple protease inhibitors. Therefore, it is imperative that we understand the mechanisms by which the viral proteins, in particular HIV-1 protease, develop resistance. We have determined the three-dimensional structure of HIV-1 protease NL4-3 in complex with the potent protease inhibitor TL-3 at 2.0 A resolution. We have also obtained the crystal structures of three mutant forms of NL4-3 protease containing one (V82A), three (V82A, M46I, F53L) and six (V82A, M46I, F53L, V77I, L24I, L63P) point mutations in complex with TL-3. The three protease mutants arose sequentially under ex vivo selective pressure in the presence of TL-3, and exhibit fourfold, 11-fold, and 30-fold resistance to TL-3, respectively. This series of protease crystal structures offers insights into the biochemical and structural mechanisms by which the enzyme can overcome inhibition by TL-3 while recovering some of its native catalytic activity.  相似文献   

17.
Population-based sequence analysis revealed the presence of a variant of human immunodeficiency virus type 1 (HIV-1) containing an insertion of amino acid Ile in the protease gene at codon 19 (19I) and amino acid substitutions in the protease at codons 21 (E21D) and 22 (A22V) along with multiple mutations associated with drug resistance, M46I/P63L/A71V/I84V/I93L, in a patient who had failed protease inhibitor (PI) therapy. Longitudinal analysis revealed that the P63L/A71V/I93L changes were present prior to PI therapy. Polymorphisms in the Gag sequence were only seen in the p1/p6 cleavage site at the P1' position (Leu to Pro) and the P5' position (Pro to Leu). To characterize the role of these mutations in drug susceptibility and replication capacity, a chimeric HIV-1 strain containing the 19I/E21D/A22V mutations with the M46I/P63L/A71V/I84V/I93L and p1/p6 mutations was constructed. The chimera displayed high-level resistance to multiple PIs, but not to lopinavir, and grew to 30% of that of the wild type. To determine the relative contribution of each mutation to the phenotypic characteristic of the virus, a series of mutants was constructed using site-directed mutagenesis. A high level of resistance was only seen in mutants containing the 19I/A22V and p1/p6 mutations. The E21D mutation enhanced viral replication. These results suggest that the combination of the 19I/E21D/A22V mutations may emerge and lead to high-level resistance to multiple PIs. The combination of the 19I/A22V mutations may be associated with PI resistance; however, the drug resistance may be caused by the presence of a unique set of mutations in the p1/p6 mutations. The E21D mutation contributes to replication fitness rather than drug resistance.  相似文献   

18.
19.
Because, in vivo , the HIV-1 PR (HIV-1 protease) present a high mutation rate we performed a comparative study of the energetic behaviors of the wild type HIV-1 PR and four type of mutants: Val82/Asn; Val82/Asp; Gln7/Lys, Leu33/Ile, Leu63/Ile; Ala71/Thr, Val82/Ala. We suggest that the energetic fluctuation (electrostatic, van der Waals and torsion energy) of the mutants and the solvent accessible surface (SAS) values can be useful to explain the viral resistance process developed by HIV-1 PR. The number and localization of enzyme mutations induce important modifications of the van der Waals and torsional energy, while the electrostatic energy has an insignificant fluctuation. We showed that the viral resistance can be explored if the solvent accessible surfaces of the active site for the mutant structures are calculated. In this paper we have obtained the solvent accessible surface for a group of 15 mutants (11 mutants obtained by Protein Data Bank (PDB) file, 4 mutants modeled by CHARMM software) and for the wild type HIV-1 PR). Our study try to show that the number and localization of the mutations are factors which induce the HIV-1 PR viral resistance. The larger solvent accessible surface could be recorded for the point mutant Val 82/Phe.  相似文献   

20.
We identified UIC-94003, a nonpeptidic human immunodeficiency virus (HIV) protease inhibitor (PI), containing 3(R),3a(S),6a(R)-bis-tetrahydrofuranyl urethane (bis-THF) and a sulfonamide isostere, which is extremely potent against a wide spectrum of HIV (50% inhibitory concentration, 0.0003 to 0.0005 microM). UIC-94003 was also potent against multi-PI-resistant HIV-1 strains isolated from patients who had no response to any existing antiviral regimens after having received a variety of antiviral agents (50% inhibitory concentration, 0.0005 to 0.0055 microM). Upon selection of HIV-1 in the presence of UIC-94003, mutants carrying a novel active-site mutation, A28S, in the presence of L10F, M46I, I50V, A71V, and N88D appeared. Modeling analysis revealed that the close contact of UIC-94003 with the main chains of the protease active-site amino acids (Asp29 and Asp30) differed from that of other PIs and may be important for its potency and wide-spectrum activity against a variety of drug-resistant HIV-1 variants. Thus, introduction of inhibitor interactions with the main chains of key amino acids and seeking a unique inhibitor-enzyme contact profile should provide a framework for developing novel PIs for treating patients harboring multi-PI-resistant HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号