首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.  相似文献   

2.
3.
During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix-degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP-dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., beta3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.  相似文献   

4.
Thejass P  Kuttan G 《Life sciences》2007,80(6):515-521
Angiogenesis is a crucial step in the growth and metastasis of cancers. The activation of endothelial cells and their further behaviour are very critical during angiogenesis. We analyzed the effect of diallyl disulfide (DADS) on angiogenesis in in vitro models using human umbilical vein endothelial cells (HUVECs). DADS significantly inhibited endothelial cell migration, invasion and tube formation. (3)H-thymidine proliferation assay clearly showed the inhibitory effect of DADS on the proliferation of HUVECs in vitro. The role of metalloproteinases has been shown to be important in angiogenesis; therefore, zymography was performed to determine whether DADS affected protease activity. Gelatin zymographic analysis showed the inhibitory effect of DADS on the activation of matrix metalloproteinases-MMP-2 and MMP-9. These findings suggest that DADS acts as an angiogenesis inhibitor by inhibiting the activation of matrix metalloproteinases during endothelial morphogenesis.  相似文献   

5.
Angiogenesis, the formation of new capillary blood vessels, occurs almost exclusively in the microcirculation. This process is controlled by the interaction between factors with positive and negative regulatory activity. In this study, we have compared the effect of two well described positive regulators, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) on bovine adrenal cortex-derived microvascular endothelial (BME) and bovine aortic endothelial (BAE) cells. The parameters we assessed included (a) cellular reorganization and lumen formation following exposure of the apical cell surface to a three-dimensional collagen gel; (b) organization of the actin cytoskeleton; (c) expression of thrombospondin-1 (TSP-1), an endogenous negative regulator of angiogenesis; and (d) extracellular proteolytic activity mediated by the plasminogen activator (PA)/plasmin system. We found that (a) collagen gel overlay induces rapid reorganization and lumen formation in BME but not BAE cells; (b) FGF-2 but not VEGF induced dramatic reorganization of actin microfilaments in BME cells, with neither cytokine affecting BAE cells; (c) FGF-2 decreased TSP-1 protein and mRNA expression in BME cells, an effect which was specific for FGF-2 and BME cells, since TSP-1 protein levels were unaffected by VEGF in BME cells, or by FGF-2 or VEGF in BAE cells; (d) FGF-2 induced urokinase-type PA (uPA) in BME and BAE cells, while VEGF induced uPA and tissue-type PA in BME cells with no effect on BAE cells. Taken together, these findings reveal endothelial cell-type specific responses to FGF-2 and VEGF, and point to the greater specificity of these cytokines for endothelial cells of the microvasculature than for large vessel (aortic) endothelial cells. Furthermore, when viewed in the context of our previous observation on the synergistic interaction between VEGF and FGF-2, our present findings provide evidence for complementary mechanisms which, when acting in concert, might account for the synergistic effect.  相似文献   

6.
Thrombospondin-1 (TSP-1) is a 450 kDa matrix bound glycoprotein involved in tumor invasion, metastasis, and angiogenesis. One of the receptors involved in TSP-1 mediated tumor cell adhesion and metastasis is the cysteine-serine-valine-threonine-cysteine-glycine (CSVTCG) receptor. One mechanism of TSP-1 in promoting tumor cell metastasis involves the up-regulation of matrix metalloproteinase-9 (MMP-9) expression, specifically through the CSVTCG TSP-1 receptor. TSP-1 and its CSVTCG receptor has been implicated in tumor progression in a variety of cancers including breast adenocarcinomas, head and neck squamous cell carcinomas, and pancreatic carcinomas. In this study, we examined 99 cases of colorectal cancer by immunohistochemical analysis to investigate 1) the localization of TSP-1 and CSVTCG TSP-1 receptor, 2) the relationship with MMP-9, and 3) the correlation of expression with clinical staging. Strong expression of TSP-1 was observed in the submucosa or the serosa adjacent to the tumor. Positive staining for CSVTCG TSP-1 receptor was observed in tumor cells and microvessels. MMP-9 was also expressed in tumor cells. In addition, staining intensity of CSVTCG TSP-1 receptor was higher in poorly differentiated adenocarcinoma than well or moderately differentiated adenocarcinoma. Tumors in which inflammatory cells stained strongly for CSVTCG TSP-1 receptor correlated with decreased incidence of distant metastasis and angiogenesis. These data were consistent with our previous studies for breast, pancreatic, and head and neck carcinoma. They suggest an important role for TSP-1 and CSVTCG TSP-1 receptor in tumor progression in colorectal cancer.  相似文献   

7.
The role of TSP-1 in tumour growth and angiogenesis remains controversial, with both stimulatory and inhibitory roles proposed. The effects of TSP-1 on the migration of endothelial cells, fibroblast and oral tumour cell lines were examined using the transmembrane assay. TSP-1 induced a bi-phasic effect on human and bovine endothelial cells: stimulation at low concentrations (0.1–10 µg/ml) and inhibition at high concentrations (25–100 µg/ml). FGF-2-stimulated endothelial cell migration was either further stimulated or inhibited by TSP-1, following the same bi-phasic dose response as in the absence of FGF-2. In contrast, TSP-1 stimulated the migration of human fibroblast and oral tumour cells in a dose dependent manner; a plateau was reached with 5–25 µg/ml and no inhibitory effect was observed. These effects were partly neutralised by antibodies to αvβ3 integrin. TGF-β1 (0.1–200ng/ml tested) mimicked the effects of TSP-1 on cell migration. Function-neutralising antibodies to TGF-β1 completely abolished both the stimulatory and inhibitory effects of TSP-1 on endothelial migration, but had no effect on TSP-1-stimulated migration of fibroblast and oral tumour cells. The effects of TGF-β1 were not affected by antibodies to TSP-1. These results indicate that the effects of TSP-1 on endothelial cell migration are mediated by TGF-β1, whereas the effects on fibroblast and tumour cell migration are TGF-β1-independent.  相似文献   

8.
Migration, invasion, metastasis and angiogenesis associated with cancer depend on the surrounding microenvironment. Angiogenesis, the growth of new capillaries, is a regulator of cancer growth and a useful target for cancer therapy. We examined matrix protein interactions in a gastric cancer cell culture that was treated with different doses of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester (CAPE). We also investigated the relations among the levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), endostatin (ES) and trombospondin-1 (TSP-1). Cytotoxity of CAPE was measured using the 3-(4,5-dmethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We examined the behavior of cells on laminin and collagen I coated surfaces in response to the angiogenic effect of these matrix molecules. We examined the protein alterations of these matrix molecules immunohistochemically and measured the levels of VEGF, MMP-9, ES and TSP-1 using the ELISA test. We showed that application of CAPE to the gastric cancer cell line on tissue culture plastic, laminin and collagen I significantly decreased the VEGF and MMP-9 protein levels. We found that TSP-1 levels were increased significantly in the gastric cancer cells after application of CAPE. The protein levels of gastric cancer cells also were increased significantly when tissue was cultured on laminin and collagen I. Application of CAPE to cells on laminin or collagen I coated surfaces significantly increased all of the proteins except ES. ES levels were increased on the collagen I covered surfaces, but the laminin surface decreased the levels of ES significantly. We demonstrated the beneficial effect of CAPE on a gastric cancer cell line including inhibition of proliferation and induction of some proteins that might be related to decreased angiogenesis.  相似文献   

9.
10.

Background

Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo.

Methods

Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml).

Results

Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05).

Conclusion

TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA.  相似文献   

11.
Isoliquiritigenin (ISL, 4,2′,4′-trihydroxychalcone), which is found in licorice, shallot and bean sprouts, is a potent antioxidant with anti-inflammatory and anti-carcinogenic effects. The purpose of this study was to investigate the effects of ISL treatment on the migration, invasion and adhesion characteristics of DU145 human prostate cancer cells. DU145 cells were cultured in the presence of 0–20 μmol/L ISL with or without 10 μg/L epidermal growth factor (EGF). ISL inhibited basal and EGF-induced cell migration, invasion and adhesion dose dependently. ISL decreased EGF-induced secretion of urokinase-type plasminogen activator (uPA), matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and vascular endothelial growth factor (VEGF), but increased TIMP-2 secretion in a concentration-dependent manner. In addition, ISL decreased the protein levels of integrin-α2, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), and mRNA levels of uPA, MMP-9, VEGF, ICAM and integrin-α2. Furthermore, basal and EGF-induced activator protein (AP)-1 binding activity and phosphorylation of Jun N-terminal kinase (JNK), c-Jun and Akt were decreased after ISL treatment. However, phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase was not altered. The JNK inhibitor SP600125 inhibited basal and EGF-induced secretion of uPA, VEGF, MMP-9 and TIMP-1, as well as AP-1 DNA binding activity and cell migration. These results provide evidence for the role of ISL as a potent antimetastatic agent, which can markedly inhibit the metastatic and invasive capacity of prostate cancer cells. The inhibition of JNK/AP-1 signaling may be one of the mechanisms by which ISL inhibits cancer cell invasion and migration.  相似文献   

12.
Hemodynamic forces exerted by blood flow (cyclic strain, shear stress) affect the initiation and progression of angiogenesis; however, the precise signaling mechanism(s) involved are unknown. In this study, we examine the role of cyclic strain in regulating bovine aortic endothelial cell (BAEC) migration and tube formation, indices of angiogenesis. Considering their well-documented mechanosensitivity, functional inter-dependence, and involvement in angiogenesis, we hypothesized roles for matrix metalloproteinases (MMP-2/9), RGD-dependent integrins, and urokinase plasminogen activator (uPA) in this process. BAECs were exposed to equibiaxial cyclic strain (5% strain, 1Hz for 24h) before their migration and tube formation was assessed by transwell migration and collagen gel tube formation assays, respectively. In response to strain, both migration and tube formation were increased by 1.83+/-0.1- and 1.84+/-0.1-fold, respectively. Pertussis toxin, a Gi-protein inhibitor, decreased strain-induced migration by 45.7+/-32% and tube formation by 69.8+/-13%, whilst protein tyrosine kinase (PTK) inhibition with genistein had no effect. siRNA-directed attenuation of endothelial MMP-9 (but not MMP-2) expression/activity decreased strain-induced migration and tube formation by 98.6+/-41% and 40.7+/-31%, respectively. Finally, integrin blockade with cRGD peptide and siRNA-directed attenuation of uPA expression reduced strain-induced tube formation by 85.7+/-15% and 84.7+/-31%, respectively, whilst having no effect on migration. CONCLUSIONS: Cyclic strain promotes BAEC migration and tube formation in a Gi-protein-dependent PTK-independent manner. Moreover, we demonstrate for the first time a putative role for MMP-9 in both strain-induced events, whilst RGD-dependent integrins and uPA appear only to be involved in strain-induced tube formation.  相似文献   

13.
Matrix metalloproteinases (MMPs) are extracellular zinc-dependent endopeptidases involved in the degradation and remodeling of extracellular matrix in physiological and pathological processes. MMPs also have a role in cell proliferation, migration, differentiation, angiogenesis, and apoptosis. We previously identified cancer invasion-related factors by comparing the gene expression profiles between parent and the highly invasive clone of cancer cells. Matrix metalloproteinase-13 (MMP-13) was identified as a common up-regulated gene by cancer invasion-related factors. Although MMP-13 slightly promoted tumor invasion, we found that MMP-13 was involved in tumor angiogenesis. Conditioned medium from MMP-13-overexpressing cells promoted capillary formation of immortalized human umbilical vein endothelial cells. Furthermore, treatment with recombinant MMP-13 protein enhanced capillary tube formation both in vitro and in vivo. MMP-13-promoted capillary tube formation was mediated by activation of focal adhesion kinase and ERK. Interestingly, MMP-13 promoted the secretion of VEGF-A from fibroblasts and endothelial cells. By immunohistochemical analysis, we found a possible correlation between MMP-13 expression and the number of blood vessels in human cancer cases. In summary, these findings suggest that MMP-13 may directly and indirectly promote tumor angiogenesis.  相似文献   

14.
We have previously shown that soluble type I collagen can induce vascular tube formation when it contacts the apical side of a confluent endothelial monolayer. In this study we have examined which soluble agent(s) are required for collagen-induced tube formation. Human neo-natal foreskin microvascular endothelial cells, maintained in basal medium, were preincubated with each test agent for 2 h prior to the addition of solubilised type I collagen (100 μg/ml). After 6 h, tube formation was quantitated using image analysis and expressed as the mean area of tube formation (mm2) per microscopic field of view. Collagen-induced tube formation did not occur in the presence of endothelial cell growth supplement, basic fibroblast growth factor, or normal pooled human serum. In contrast, the addition of heparin at 5 or 50 μg/ml caused extensive tube formation (0.22 ± 0.07 and 0.30 ± 0.12 mm2, respectively) whereas at 500 μg/ml little tube formation occurred (0.03 ± 0.02 mm2). Protamine sulfate, an antagonist of heparin, inhibited collagen-induced tube formation in a dose-dependent manner. Pentosan polysulfate, dextran sulfate, heparan sulfate, and chondroitin sulfate mimicked the action of heparin. Partially sulfated heparin (de-N-sulfated heparin) stimulated less tube formation compared to heparin (0.15 ± 0.06 mm2 at 50 μg/ml). The nonsulfated polysaccharides, xylan and dextran, had no effect on tube formation. In summary, sulfated polysaccharides are required for collagen-induced vascular tube formation in vitro. The sulfation of these molecules appears to be vital for collagen-induced tube formation.  相似文献   

15.
16.
17.
Gelatinase A (matrix metalloproteinase-2, MMP-2) binds to several proteins through its collagen-binding domains (CBDs). Surface plasmon resonance analysis revealed a strong interaction between CBD123 and thrombospondin-1 (TSP-1), with a K(D) value of 2x10(-9) M. CBD123, as well as individual domains, behave as competitive inhibitors of the TSP-1-directed endocytic clearance of active MMP-2, but not of its latent form, by HT1080 fibrosarcoma cells. Enhanced level of active MMP-2 in conditioned medium was associated to increased matrigel invasion. Similarly, GGWSHWSPWSS and GGWSHW peptides, as tryptophan-rich peptides within properdin-repeat motifs (TSRs) of TSP-1, promoted MMP-2 accumulation and cell invasiveness. Our data document the importance of TSP-1 in promoting MMP-2-mediated cancer cell invasion through interaction between CBDs of the enzyme and TSRs motifs of TSP-1.  相似文献   

18.
As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号