首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the membrane lipid composition and physical state on the activity of acyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase in rat liver plasma membranes has been investigated. The membrane's lipid composition has been modified either by lipid transfer proteins or by partial delipidation with exogenous phospholipases. The results indicate that membrane fluidity is of particular importance for membrane-bound palmitoyl-CoA: and oleoyl-CoA:1-acyl-glycero-3-phosphocholine acyltransferase. The incorporation of phospholipids that induce membrane fluidization such as dioleoylphosphatidylcholine, egg yolk phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine was accompanied by an elevation of acyltransferase activity. On the contrary, the phospholipids causing augmentation of membrane rigidity induced a decrease of this activity. A suggestion is made concerning the possible role of the membrane physical state for the deacylation-reacylation cycle in rat liver plasma membranes.  相似文献   

2.
Investigations have been carried out on the influence of membrane lipid composition and physical state on acyl-CoA: 1-acyl-glycerol-3-phosphoethanolamine O-acyltransferase activity in rat liver plasma membranes. The lipid composition of the membranes was modified either by way of lipid transfer proteins or by partial delipidation with exogenous phospholipases and subsequent enrichment of the membranes with different phospholipids. The results indicated that membrane rigidification by enrichment of the membranes with DPPC or SM reduced the transfer of oleic and palmitic acid to lysophosphatidylethanolamine, whereas all phospholipids inducing membrane fluidization lead to acyltransferase activation. The eventual role of membrane fluidity in the deacylation-reacylation cycle is discussed.  相似文献   

3.
Liver and intestinal cytosol contain abundant levels of long chain fatty acyl-CoA binding proteins such as liver fatty acid binding protein (L-FABP) and acyl-CoA binding protein (ACBP). However, the relative function and specificity of these proteins in microsomal utilization of long chain fatty acyl-CoAs (LCFA-CoAs) for sequential transacylation of glycerol-3-phosphate to form phosphatidic acid is not known. The results showed for the first time that L-FABP and ACBP both stimulated microsomal incorporation of the monounsaturated oleoyl-CoA and polyunsaturated arachidonoyl-CoA 8–10-fold and 2–3-fold, respectively. In contrast, these proteins inhibited microsomal utilization of the saturated palmitoyl-CoA by 69% and 62%, respectively. These similar effects of L-FABP and ACBP on microsomal phosphatidic acid biosynthesis were mediated primarily through the activity of glycerol-3-phosphate acyltransferase (GPAT), the rate limiting step, rather than by protecting the long chain acyl-CoAs from microsomal hydrolase activity. In fact, ACBP but not L-FABP protected long chain fatty acyl-CoAs from microsomal acyl-CoA hydrolase activity in the order: palmitoyl-CoA>oleoyl-CoA>arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   

4.
Acyl-CoA:l-acyl-sn-glycero-3-phosphochoh'ne acyltransferase (EC 2.3.1.23) was extracted from rat liver microsomes with an aqueous dispersion of 1-acylsn-glycero-3-phosphocholine, a substrate of the enzyme, and purified up to 30-fold. The procedure includes removal of unrelevant proteins and lipids by washings of microsomes with a buffer of high ionic strength and with buffers containing detergents, extraction of the enzyme with an aqueous dispersion of 1-acyl-sn-glycero-3-phosphocholine, and chromatography by gel filtration. The acyltransferase was eluted from a Ultrogel AcA 34 column at a position with a Kav of 0.122; an elution position of a protein with a molecular weight of 225 000.The partially purified enzyme was active over a wide range of pH with an optimum at around pH 8. Depending on the acyl donors, different rates of the reaction were obtained by the preparation. The order was: arachidonoyl-CoA > linoleoyl-CoA = oleoyl-CoA > palmitoyl-CoA. The enzyme preparation acylated 1-acyl-sn-glycero-3-phosphocholine, 1-acyl-sn-glycero-3-phosphoethanolamine and 1-acyl-sn-glycero-3-phosphoinositol but not acylated 2-acyl-sn-glycero-3-phosphocholine, 1-acyl-sn-glycerol 3-phosphate or diacylglycerol. Some sulfhydryl-binding reagents inactivated the enzyme.  相似文献   

5.
Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC50?=?78.7 and 64.7 µM) and but also for palmitic acid (IC50?=?236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC50?=?411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC50?=?57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver.  相似文献   

6.
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography–mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death.  相似文献   

7.
长链脂肪酰基Co A合成酶(LACS)在脂肪酸的合成与分解代谢中起着重要作用。本研究以油茶(Camellia oleifera Abel)国家审定品种华硕(Camellia oleifera Huashuo)种仁转录组数据为基础,根据LACS基因Unigene序列设计引物,分离克隆了油茶LACS1基因全长c DNA序列,命名为CoLACS1(Gene Bank登录号:KJ960228),全长2114 bp,开放阅读框2088 bp,编码695个氨基酸;生物信息学分析显示CoLACS1具有3个B1ock,从分子特征可判断CoLACS1属于LACS家族;氨基酸同源比对显示与其他物种的LACS氨基酸序列具有较高的相似性,其中与拟南芥LACS7相似性为78%,与麻风树、大豆、毛果杨等物种LACS6(peroxisomal)相似性可达80%以上;对CoLACS1进行原核表达分析,构建的p ET30a-CoLACS1载体成功转化至BL21(DE3)中经1 mmol/L IPTG诱导表达,菌液检测获得预测的目的蛋白(分子量约为76 k D);分析转录组数据中CoLACS1的Unigene序列RTKM值并对CoLACS1进行实时荧光定量PCR分析,结果表明CoLACS1在油茶华硕种子发育各时期平稳表达,表达丰度变化不大,荧光定量结果变化规律与转录组数据分析一致;同时分析华硕种仁不同时期含油率和脂肪酸成分变化,双变量统计分析发现CoLACS1表达模式与油茶油脂积累规律呈显著相关性。本研究为进一步研究油茶油脂积累与代谢的基因调控提供理论依据。  相似文献   

8.
This paper reviews characteristics of microsomal membrane structure; long chain fatty acids, acyl CoA derivatives, retinoids and the microsomal formation of acyl CoA derivatives and retinyl esters. It is analyzed how the movement of these molecules at the intracellular level is affected by their respective binding proteins (Fatty acid binding protein, acyl CoA binding protein and cellular retinol binding protein). Studies with model systems using these hydrophobic ligands and the lipid-binding or transfer proteins are also described. This topic is of interest especially because in the esterification of retinol the three substrates and the three binding proteins may interact. (Mol Cell Biochem20: 89–94, 1993)Abbreviations FABP(s) Fatty Acid Binding Protein(s) - CRBP Cellular Retinol Binding Protein - ACBP Acyl-CoA-Binding Protein  相似文献   

9.
Bovine heart muscle microsomes rapidly convert lysophosphatidylcholine (LPC) into phosphatidylcholine (PC) in the presence of oleoyl-CoA. Both substrates are incorporated into the product, although the rate of incorporation of radiolabel into PC from 1-[14C]palmitoyl-LPC was approximately threefold higher than the rate of incorporation from [14C]oleoyl-CoA. Furthermore, the rate of incorporation of radiolabel from [14C]LPC was stimulated fivefold by the presence of oleoyl-CoA. These results demonstrate the presence of both acyl-CoA:1-acyl-sn-glycero-3-phosphocholine O-acyltransferase (EC 2.3.1.23) and an LPC:LPC transacylase (EC 3.1.1.5) in microsomes. Separation of the two enzymatic activities and purification of the acyltransferase was achieved by a procedure involving extraction with 3-[3-cholamidopropyl)dimethylammonio)-1-propanesulfonate detergent and chromatography on DEAE-cellulose, Reactive blue agarose, and Matrex gel green A. The isolated acyltransferase was a single species of 64,000 Da as judged by polyacrylamide gel electrophoresis in the presence of dodecyl sulfate. The substrate specificity of the enzyme was studied by using a series of lysophospholipids as acyl acceptors and acyl-CoA derivatives as acyl donors. The enzyme was catalytically active with LPC as acyl acceptor but displayed little or no activity with lysophosphatidylethanolamine, lysophosphatidylinositol, or lysophosphatidylserine. Of the LPC derivatives tested, the highest activity was obtained with 1-palmitoyl-LPC. Wider specificity was exhibited for the nature of the acyl donor, for which arachidonoyl-CoA, linoleoyl-CoA, and oleoyl-CoA were highly active substrates. These properties of the acyltransferase are in accord with a role of the enzyme in determining the composition of PC in myocardium.  相似文献   

10.
Medium chain acyl-CoA synthetases catalyze the first reaction of amino acid conjugation of many xenobiotic carboxylic acids and fatty acid metabolism. This paper reports studies on purification, characterization, and the partial amino acid sequence of mouse liver enzyme. The medium chain acyl-CoA synthetase was isolated from mouse liver mitochondria. The purified enzyme catalyzes this reaction not only for straight medium chain fatty acids but also for aromatic and arylacetic acids. Maximal activity was found with hexanoic acid. High activities were obtained with benzoic acid having methyl, pentyl, and methoxy groups in the para- or meta-positions of the benzene ring. However, the enzyme was less active with valproic acid and ketoprofen. Salicylic acid exhibited no activity. The medium chain acyl-CoA synthetases from mouse and bovine liver mitochondria were subjected to in-gel tryptic digestion, followed by LC-MS/MS sequence analysis. The amino acid sequence of each tryptic peptide of mouse liver mitochondrial medium chain acyl-CoA synthetase differed from that from bovine liver mitochondria only in one or two amino acids. LC-MS/MS analysis provided the information about these differences in amino acid sequences. In addition, we compared the properties of this protein with the homologues from rat and bovine.  相似文献   

11.
Acyl CoA: cholesterol acyl transferase (ACAT) activity presents marked oscillations and differential sensitivity to the in vitro stimulation of the kinase-phosphatase modulatory system in the perinatal rat liver.The regulation of this enzyme activity by some modulators generally active in adulthood, such as cholesterol, lipoproteins and mevalonate, has been studied in hepatocytes isolated at different developmental stages. A lack of effect of mevalonate and a positive effort of lipoprotein cholesterol have been observed at the fetal and neonatal stages.A differential prevalence is suggested of one of the two modulatory mechanisms (phosphorylation-dephosphorylation system, or substrate effect) at each developmental stage.  相似文献   

12.
Acyl coenzyme A:cholesterol acyltransferase (ACAT) catalyzes the intracellular synthesis of cholesteryl esters (CE). Both ACAT isoforms, ACAT1 and ACAT2, play key roles in the pathophysiology of atherosclerosis and ACAT inhibition retards atherosclerosis in animal models. Rimonabant, a type 1 cannabinoid receptor (CB1) antagonist, produces anti-atherosclerotic effects in humans and animals by mechanisms which are not completely understood. Rimonabant is structurally similar to two other cannabinoid receptor antagonists, AM251 and SR144528, recently identified as potent inhibitors of ACAT. Therefore, we examined the effects of Rimonabant on ACAT using both in vivo cell-based assays and in vitro cell-free assays. Rimonabant dose-dependently reduced ACAT activity in Raw 264.7 macrophages (IC50 = 2.9 ± 0.38 μM) and isolated peritoneal macrophages. Rimonabant inhibited ACAT activity in intact CHO-ACAT1 and CHO-ACAT2 cells and in cell-free assays with approximately equal efficiency (IC50 = 1.5 ± 1.2 μM and 2.2 ± 1.1 μM for CHO-ACAT1 and CHO-ACAT2, respectively). Consistent with ACAT inhibition, Rimonabant treatment blocked ACAT-dependent processes in macrophages, oxysterol-induced apoptosis and acetylated-LDL induced foam cell formation. From these results we conclude that Rimonabant is an ACAT1/2 dual inhibitor and suggest that some of the atherosclerotic beneficial effects of Rimonabant are, at least partly, due to inhibition of ACAT.  相似文献   

13.
The in vitro and ex vivo effects of antidepressant drugs on membrane-bound phosphatidylinositol (PI) synthetase and PI: myo-inositol exchange enzyme activities were examined. In rat brain subcellular fractions, PI synthetase occurred exclusively in the microsomes. In comparison, the activity of CDP-diglyceride independent PI: myo-inositol exchange enzyme was low (3%). Of the various CDP-diglycerides tested for the activation of PI synthetase, CDP-dipalmitin was the most active. Addition of 1 mM of desipramine, amitriptyline, imipramine, iprindole, clomipramine and mianserin in vitro significantly inhibited (30–60%) PI synthetase activity, whereas the same concentration of zimelidine and fluoxetine had no effect. At low liponucleotide concentrations, PI synthetase activity was significantly enhanced by imipramine (1 mM), whereas the enzyme activity was inhibited at higher liponucleotide concentrations (>0.3 mM). In contrast, imipramine had no effect on the PI: myo-inositol exchange enzyme activity. No significant alteration in the PI synthetase activity was found following either acute (2 h) or chronic (21 d) treatment of rats with imipramine. The above results indicate that the de novo synthesis of PI is inhibited in vitro but not ex vivo by some antidepressant drugs. However, in view of the high concentration of the drugs required, the pharmacological significance of this inhibitory action with respect to their therapeutic effects is doubtful.  相似文献   

14.
A translocation of phosphatidate phosphohydrolase from the cytosolic to the microsomal fraction was promoted in cell-free extracts of rat liver by oleate and palmitate and their CoA esters. Oleate was more potent in this respect than palmitate and the CoA esters were more effective than the unesterified acids. Octanoate, octanoyl-CoA and CoA did not cause the translocation. It is proposed that the interaction of phosphatidate phosphohydrolase with the membranes that synthesize glycerolipids causes it to become metabolically active. This enables the liver to increase its capacity for triacylglycerol synthesis in response to an increased supply of fatty acids.  相似文献   

15.
Membrane fractions enriched in rough endoplasmic reticulum and not contaminated with plastidial membranes were isolated from etiolated shoots of Pisum sativum (L.). From these fractions the acyl-CoA:1-acyl-sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.51) was solubilized by extracting the membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate at high ionic strength. The subsequent separation of the solubilized fractions on a Mono Q column resulted in a tenfold enriched enzymic activity, which could be stabilized by polyethyleneglycol precipitation. A comparison of the substrate specificities and selectivities of the solubilized, enriched 1-acylglycerol-3-phosphate acyltransferase and the corresponding membrane-bound activity revealed no appreciable difference. Both enzymic forms specifically utilized acyl-CoA thioesters as acyl donors whereas the corresponding acyl-acyl carrier protein thioesters were not used. Furthermore, the membrane-bound as well as the solubilized enriched form showed not only higher activities with 1-oleoylthan with 1-palmitoylglycerol-3-phosphate but also pronounced specificities and selectivities for unsaturated C18-CoA thioesters. Hence, the extraplastidial 1-acylglycerol-3-phosphate acyltransferase which catalyses the formation of phosphatidic acid with an eukaryotic fatty-acid pattern was partially purified.Abbreviations ACP acyl carrier protein - CHAPS 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate - LPA-AT acyl-CoA:1-acylglycerol-3-phosphate acyltransferase - PEG polyethyleneglycol The authors are grateful to the Deutsche Forschungsgemeinschaft for financial support. We wish to thank Miss Ute Hammer for the analysis of the lipid composition of the microsomal fractions.  相似文献   

16.
An S  Cho KH  Lee WS  Lee JO  Paik YK  Jeong TS 《FEBS letters》2006,580(11):2741-2749
To investigate a role for histidine residues in the expression of normal acyl-CoA:cholesterol acyltransferase (ACAT) activity, the histidine residues located at five different positions in two isoenzymes were substituted by alanine, based on the sequence homology between ACAT1 and ACAT2. Among the 10 mutants generated by baculovirus expression technology, H386A-ACAT1, H460A-ACAT1, H360A-ACAT2, and H399A-ACAT2 lost their enzymatic activity completely. A reduction in catalytic activity is unlikely to result from structural changes in the substrate-binding pocket, because their substrate-binding affinities were normal. However, the enzymatic activity of H386A-ACAT1 was restored to <37% of the level of the wild-type activity when cholesterol was replaced by 25-hydroxycholesterol as substrate. H527A-ACAT1 and H501A-ACAT2, termed carboxyl end mutants, exhibit activities of ∼96% and ∼75% of that of the wild-type. Interestingly, H425A-ACAT1 showed 59% of the wild-type activity, in contrast to its equivalent mutant, H399A-ACAT2. These results demonstrate that the histidine residues located at the active site are very crucial both for the catalytic activity of the enzyme and for distinguishing ACAT1 from ACAT2 with respect to enzyme catalysis and substrate specificity.  相似文献   

17.
The plant enzyme 4-coumarate:coenzyme A ligase (4CL) is part of a family of adenylate-forming enzymes present in all organisms. Analysis of genome sequences shows the presence of '4CL-like' enzymes in plants and other organisms, but their evolutionary relationships and functions remain largely unknown. 4CL and 4CL-like genes were identified by BLAST searches in Arabidopsis, Populus, rice, Physcomitrella, Chlamydomonas and microbial genomes. Evolutionary relationships were inferred by phylogenetic analysis of aligned amino acid sequences. Expression patterns of a conserved set of Arabidopsis and poplar 4CL-like acyl-CoA synthetase (ACS) genes were assayed. The conserved ACS genes form a land plant-specific class. Angiosperm ACS genes grouped into five clades, each of which contained representatives in three fully sequenced genomes. Expression analysis revealed conserved developmental and stress-induced expression patterns of Arabidopsis and poplar genes in some clades. Evolution of plant ACS enzymes occurred early in land plants. Differential gene expansion of angiosperm ACS clades has occurred in some lineages. Evolutionary and gene expression data, combined with in vitro and limited in vivo protein function data, suggest that angiosperm ACS enzymes play conserved roles in octadecanoid and fatty acid metabolism, and play roles in organ development, for example in anthers.  相似文献   

18.
Recently, acyl-CoA:cholesterol acyltransferase was found to be present as two isoforms, ACAT-1 and ACAT-2, in mammalian tissues with different metabolic functions and tissue-specific locations. In this study, the isoforms were mass-produced individually from insect cells to establish a more sensitive and reliable screening method for specific inhibitors against each isoform. The expressed hACAT-1 and hACAT-2 appeared as a 50 kDa- and a 46 kDa-band on SDS-PAGE, respectively, from Hi5 cells and they preferred to exist in oligomeric form, from dimer to tetramer, during the purification process. They also exhibited an approximate 3.4 to 3.7-fold increase in activities when compared to rat liver microsomal fractions at the same protein concentration. Known ACAT inhibitors, pyripyropene A, oleic acid anilide, and diethyl pyrocarbonate, were tested to evaluate the inhibitory specificity and sensitivity of the expressed enzymes. Interestingly, pyripyropene A inhibited only the hACAT-2 fraction with IC(50)=0.64 microM but not the hACAT-1 fraction; whereas the fatty acid anilide did not show a significant difference in inhibitory activity with either hACAT-1 or hACAT-2. Furthermore, cholesterol was more rapidly utilized by hACAT-1, but hACAT-2 esterified other cholic acid derivatives more efficiently. These results suggest that the specificity of each substrate and inhibitor was highly different, depending on each isoform from the viewpoint of the regulatory site and the substrate binding site location.  相似文献   

19.
20.

Background

Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation–reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain long-chain acyl-CoA synthetase (Acsl)4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl4 catalyzed acylation, and thus have a potential anti-BD action.

Methods

Rat Acsl4-flag protein was expressed in Escherichia coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis–Menten kinetics.

Results

Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect.

Conclusions

PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号