首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Human BFK (BCL-2 family kin) is a novel pro-apoptotic BCL-2 family member specifically expressed in the gastrointestinal tract. BFK has the characteristic BH3 domain, which was shown to be essential for the apoptosis-inducing activity of pro-apoptotic BCL-2 family members. When overexpressed, BFK interacts with BCL-XL and BCL-W but not BCL-2 or BAD in co-immunoprecipitations studies. We find that BFK exhibits striking similarity to BID in the way it is activated through cleavage during apoptosis. The endogenous and cleaved versions of BFK are readily recognized by the rabbit and mouse sera raised against human BFK. An ideal caspase 3 or 7 target sequence, DEVD (amino acids 38–41), is evident N-terminal to the BH3 domain. A recombinant version of the protein containing all residues downstream of the putative caspase cleavage site induces apoptosis in human colon cancer cells, HCT116, and in wild-type mouse embryonic fibroblasts (MEFs), which can be reversed by co-expression of BCL-XL or BCL-W. BFK becomes activated through caspase-dependent cleavage during DNA damage-induced apoptosis. The cleaved form of the protein is dependent on the presence of BAX or BAK for its ability to induce apoptosis, since BAX–/–-BAK–/– double-knockout MEFs are completely resistant to BFK-induced apoptosis.  相似文献   

2.
Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies including acute lymphoblastic leukemia (ALL). The BCL-2 family has an essential role in regulating GC-induced cell death. Here we show that downregulation of antiapoptotic BCL-2 family proteins, especially MCL-1, enhances GC-induced cell death. Thus we target MCL-1 by using GX15-070 (obatoclax) in ALL cells. Treatment with GX15-070 in both dexamethasone (Dex)-sensitive and -resistant ALL cells shows effective growth inhibition and cell death. GX15-070 induces caspase-3 cleavage and increases the Annexin V-positive population, which is indicative of apoptosis. Before the onset of apoptosis, GX15-070 induces LC3 conversion as well as p62 degradation, both of which are autophagic cell death markers. A pro-apoptotic molecule BAK is released from the BAK/MCL-1 complex following GX15-070 treatment. Consistently, downregulation of BAK reduces caspase-3 cleavage and cell death, but does not alter LC3 conversion. In contrast, downregulation of ATG5, an autophagy regulator, decreases LC3 conversion and cell death, but does not alter caspase-3 cleavage, suggesting that apoptosis and autophagy induced by GX15-070 are independently regulated. Downregulation of Beclin-1, which is capable of crosstalk between apoptosis and autophagy, affects GX15-070-induced cell death through apoptosis but not autophagy. Taken together, GX15-070 treatment in ALL could be an alternative regimen to overcome glucocorticoid resistance by inducing BAK-dependent apoptosis and ATG5-dependent autophagy.  相似文献   

3.
The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis1. Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)1. After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues2.In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)3-6. Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation7,8. In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members7,9. As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization10. LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)10. This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)11. As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.  相似文献   

4.
Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic “BH3-only” BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast.In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase’s downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.  相似文献   

5.
The RAS/MEK/ERK genetic axis is commonly altered in rhabdomyosarcoma (RMS), indicating high activity of downstream effector ERK1/2 kinase. Previously, we have demonstrated that inhibition of the RAS/MEK/ERK signaling pathway in RMS is insufficient to induce cell death due to residual pro-survival MCL-1 activity. Here, we show that the combination of ERK1/2 inhibitor Ulixertinib and MCL-1 inhibitor S63845 is highly synergistic and induces apoptotic cell death in RMS in vitro and in vivo. Importantly, Ulixertinib/S63845 co-treatment suppresses long-term survival of RMS cells, induces rapid caspase activation and caspase-dependent apoptosis. Mechanistically, Ulixertinib-mediated upregulation of BIM and BMF in combination with MCL-1 inhibition by S63845 shifts the balance of BCL-2 proteins towards a pro-apoptotic state resulting in apoptosis induction. A genetic silencing approach reveals that BIM, BMF, BAK and BAX are all required for Ulixertinib/S63845-induced apoptosis. Overexpression of BCL-2 rescues cell death triggered by Ulixertinib/S63845 co-treatment, confirming that combined inhibition of ERK1/2 and MCL-1 effectively induces cell death of RMS cells via the intrinsic mitochondrial apoptotic pathway. Thus, this study is the first to demonstrate the cytotoxic potency of co-inhibition of ERK1/2 and MCL-1 for RMS treatment.  相似文献   

6.
Abstract: Expression of the BCL-2 protein family members, BAX, BAK, BAD, BCL-xL, BCL-xS, and BCL-2, was measured (by western blotting using specific antibodies) in PC12 cells before and during apoptosis induced by either H2O2 treatment or by serum deprivation and during rescue from apoptosis by nerve growth factor (NGF). H2O2-induced apoptosis, as measured by DNA fragmentation, caused: (a) a dose-dependent increase in BAX, (b) a dose-independent increase in BAK, and (c) a dose-dependent inhibition of BAD expression. By comparison, apoptosis induced by serum deprivation resulted in a time-dependent decrease in both BAX and BAK, along with a dramatic and sudden decrease in BAD expression. However, when PC12 cells were incubated in an apoptosis-sparing medium (i.e., NGF-supplemented serum-free medium), both BAX and BAK were increased significantly, whereas BAD expression remained inhibited. BCL-xL expression was increased by H2O2 but unaffected by serum deprivation or long-term NGF treatment. Neither BCL-2 nor BCL-xS expression could be detected in PC12 cells under the experimental conditions tested. Our results show that the expression of BAX, BAK, BAD, and BCL-xL is altered in a stimulus-dependent manner but cannot be used to define whether a cell will undergo or survive apoptosis. The similarity between changes in expression of BCL-2-related proteins induced by H2O2 exposure and NGF rescue could reflect activation in part of a common antioxidant pathway.  相似文献   

7.
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.  相似文献   

8.
Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.  相似文献   

9.
BAK is a pro-apoptotic BCL-2 family protein that localizes to mitochondria. Here we evaluate the function of BAK in several mouse models of neuronal injury including neuronotropic Sindbis virus infection, Parkinson's disease, ischemia/stroke, and seizure. BAK promotes or inhibits neuronal death depending on the specific death stimulus, neuron subtype, and stage of postnatal development. BAK protects neurons from excitotoxicity and virus infection in the hippocampus. As mice mature, BAK is converted from anti- to pro-death function in virus-infected spinal cord neurons. In addition to regulating cell death, BAK also protects mice from kainate-induced seizures, suggesting a possible role in regulating synaptic activity. BAK can alter neurotransmitter release in a direction consistent with its protective effects on neurons and mice. These findings suggest that BAK inhibits cell death by modifying neuronal excitability.  相似文献   

10.
One of the earliest effects of hypoxia on neuronal function is to produce a run-down of synaptic transmission, and more prolonged hypoxia results in neuronal death. An increase in the permeability of the outer mitochondrial membrane, controlled by BCL-2 family proteins, occurs in response to stimuli that trigger cell death. By patch clamping mitochondrial membranes inside the presynaptic terminal of a squid giant synapse, we have now found that several minutes of hypoxia trigger the opening of large multiconductance channels. The channel activity is induced concurrently with the attenuation of synaptic responses that occurs under hypoxic conditions. Hypoxia-induced channels are inhibited by NADH, an agent that inhibits large conductance channels produced by a pro-apoptotic fragment of BCL-xL in these synaptic mitochondria. The appearance of hypoxia-induced channels was also prevented by the caspase/cysteine protease inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone (Z-VAD-fmk), which inhibits proteolysis of BCL-xL during hypoxia. Both NADH and Z-VAD-fmk reduced significantly the rate of decline of synaptic responses during hypoxia. Our results indicate that an increase in outer mitochondrial channel activity is a very early event in the response of neurons to hypoxia and suggest that this increase in activity may contribute to the decline in synaptic function during hypoxia.  相似文献   

11.
The structure of human BCL-w, an anti-apoptotic member of the BCL-2 family, was determined by triple-resonance NMR spectroscopy and molecular modeling. Introduction of a single amino acid substitution (P117V) significantly improved the quality of the NMR spectra obtained. The cytosolic domain of BCL-w consists of 8 alpha-helices, which adopt a fold similar to that of BCL-xL, BCL-2, and BAX proteins. Pairwise root meant square deviation values were less than 3 A for backbone atoms of structurally equivalent regions. Interestingly, the C-terminal helix alpha8 of BCL-w folds into the BH3-binding hydrophobic cleft of the protein, in a fashion similar to the C-terminal transmembrane helix of BAX. A peptide corresponding to the BH3 region of the pro-apoptotic protein, BID, could displace helix alpha8 from the BCL-w cleft, resulting in helix unfolding. Deletion of helix alpha8 increased binding affinities of BCL-w for BAK and BID BH3-peptides, indicating that this helix competes for peptide binding to the hydrophobic cleft. These results suggest that although the cytosolic domain of BCL-w exhibits an overall structure similar to that of BCL-xL and BCL-2, the unique organization of its C-terminal helix may modulate BCL-w interactions with pro-apoptotic binding partners.  相似文献   

12.
Apoptosis during preimplantation development has received much interest because of its potential role in eliminating defective cells. Although development in humans is characterised by a high degree of genetic abnormality, little is known of the regulation of apoptosis in embryos. By PolyA PCR we analysed expression of 11 BCL-2 genes in individual human embryos representative of normal development and in severely fragmented embryos. We demonstrate constitutive expression of BAX in virtually all embryos at all stages of development, and variable expression of BCL2, BCL-XL, BCL-W, MCL-1 BAK, BAD, BOKL, BID, BIK, and BCL-XS. The frequency of expression of pro- and anti-apoptotic BCL-2 members was similar throughout development, except at the two-cell stage where pro-apoptotic genes predominated. Protein expression was confirmed for BCL-2, MCL-1, BCL-X, BAX, BAD, and activated caspase 3. BCL-2 protein was associated with mitochondria but expressed inconsistently in the blastocyst inner cell mass. Consistent differences between morphologically intact and fragmented embryos included the expression of BAK in fragmented but not intact four-cell embryos. Our study addresses the importance of examining single human embryos representative of the viable population for a large number of genes, in order to establish meaningful expression profiles and provide information on overlapping function in a large gene family.  相似文献   

13.
Bcl-2 protein family members function either to promote or inhibit programmed cell death. Bcl-2, typically an inhibitor of apoptosis, has also been demonstrated to have pro-apoptotic activity (Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Science 278, 1966-1968). The pro-apoptotic activity has been attributed to the cleavage of Bcl-2 by caspase-3, which converts Bcl-2 to a pro-apoptotic molecule. Bcl-2 is a membrane protein that is localized in the endoplasmic reticulum (ER) membrane, the outer mitochondrial membrane, and the nuclear envelope. Here, we demonstrate that transient expression of Bcl-2 at levels comparable to those found in stably transfected cells induces apoptosis in human embryonic kidney 293 cells and in the human breast cell line MDA-MB-468 cells. Furthermore, we have targeted Bcl-2 specifically to either the ER or the outer mitochondrial membrane to test whether induction of apoptosis by Bcl-2 is dependent upon its localization within either of these membranes. Our findings indicate that Bcl-2 specifically targeted to the mitochondria induces cell death, whereas Bcl-2 that is targeted to the ER does not. The expression of Bcl-2 does result in its cleavage to a 20-kDa protein; however, mutation of the caspase-3 cleavage site (D34A) does not inhibit its ability to induce cell death. Additionally, we find that transiently expressed ER-targeted Bcl-2 inhibits cell death induced by Bax overexpression. In conclusion, the ability of Bcl-2 to promote apoptosis is associated with its localization at the mitochondria. Furthermore, the ability of ER-targeted Bcl-2 to protect against Bax-induced apoptosis suggests that the ER localization of Bcl-2 may play an important role in its protective function.  相似文献   

14.
Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.  相似文献   

15.
Cleavage of caspase substrates is believed to be the commitment point that will lead a cell towards apoptosis. While the cleavage of some caspase substrates participates directly in the dismantling of the cell, others regulate the extent of caspase activation. In this communication, we discuss some recent findings indicating that two caspase substrates, MEKK1 and RasGAP, change their functions from anti- to pro-apoptotic as caspase activity increases. MEKK1 is a MAPK kinase kinase regulating the JNK MAPK pathway. As a full-length protein, MEKK1 generates protective signals (e.g. in cardiomyocytes), but potentiates apoptosis when cleaved by caspases. This switch is mediated by a translocation of the kinase activity from insoluble to soluble cellular structures. RasGAP is a regulator of Ras GTPase family members. As a full-length protein, RasGAP does not modulate apoptosis. However, low caspase activity readily induces the cleavage of RasGAP into an N-terminal fragment that generates potent anti-apoptotic signals. At higher caspase activity, the N-terminal fragment is further cleaved into two fragments that strongly potentiate apoptosis. RasGAP can, thus, be viewed as an apoptostat because it allows the cells to determine when caspases have been mildly activated to fulfill functions other than apoptosis or when caspases are strongly activated to mediate apoptosis.  相似文献   

16.
Hematopoietic growth factors mediate the survival and proliferation of blood-forming cells, but the mechanisms through which these proteins produce their effects are incompletely known. Recent studies have identified the pim family of kinases as mediators of cytokine-dependent survival signals. Several studies have identified substrates for the pim-1 kinase, but little is known about the other family members, pim-2 and pim-3. We have investigated potential functions for the pim-2 kinase in factor-dependent murine hematopoietic cells. We find that pim-2 mRNA and protein expression are regulated by cytokines similarly to pim-1. Three PIM-2 protein isoforms are produced in cytokine-treated cells. All three forms are active kinases, and the short (PIM-2(34 kDa)) form is the most active at enhancing survival of FDCP1 cells after cytokine withdrawal. This pro-survival function involves inhibition of apoptosis and caspase activation. Enforced expression of PIM-2(34 kDa) kinase does not appear to regulate expression of BCL-2, BCL-xL, BIM, or BAX proteins. However, the kinase can phosphorylate the pro-apoptotic protein BAD on serine 112, which accounts in part for its ability to reverse Bad-induced cell death. Our results indicate that pim-2 functions similarly to pim-1 as a pro-survival kinase and suggest that BAD is a legitimate PIM-2 substrate.  相似文献   

17.
Most intrinsic death signals converge into the activation of pro-apoptotic BCL-2 family members BAX and BAK at the mitochondria, resulting in the release of cytochrome c and apoptosome activation. Chronic endoplasmic reticulum (ER) stress leads to apoptosis through the upregulation of a subset of pro-apoptotic BH3-only proteins, activating BAX and BAK at the mitochondria. Here we provide evidence indicating that the full resistance of BAX and BAK double deficient (DKO) cells to ER stress is reverted by stimulation in combination with mild serum withdrawal. Cell death under these conditions was characterized by the appearance of classical apoptosis markers, caspase-9 activation, release of cytochrome c, and was inhibited by knocking down caspase-9, but insensitive to BCL-X(L) overexpression. Similarly, the resistance of BIM and PUMA double deficient cells to ER stress was reverted by mild serum withdrawal. Surprisingly, BAX/BAK-independent cell death did not require Cyclophilin D (CypD) expression, an important regulator of the mitochondrial permeability transition pore. Our results suggest the existence of an alternative intrinsic apoptosis pathway emerging from a cross talk between the ER and the mitochondria.  相似文献   

18.
Activation of caspases 3 and 9 is thought to commit a cell irreversibly to apoptosis. There are, however, several documented situations (e.g., during erythroblast differentiation) in which caspases are activated and caspase substrates are cleaved with no associated apoptotic response. Why the cleavage of caspase substrates leads to cell death in certain cases but not in others is unclear. One possibility is that some caspase substrates generate antiapoptotic signals when cleaved. Here we show that RasGAP is one such protein. Caspases cleave RasGAP into a C-terminal fragment (fragment C) and an N-terminal fragment (fragment N). Fragment C expressed alone induces apoptosis, but this effect could be totally blocked by fragment N. Fragment N could also block apoptosis induced by low levels of caspase 9. As caspase activity increases, fragment N is further cleaved into fragments N1 and N2. Apoptosis induced by high levels of caspase 9 or by cisplatin was strongly potentiated by fragment N1 or N2 but not by fragment N. The present study supports a model in which RasGAP functions as a sensor of caspase activity to determine whether or not a cell should survive. When caspases are mildly activated, the partial cleavage of RasGAP protects cells from apoptosis. When caspase activity reaches levels that allow completion of RasGAP cleavage, the resulting RasGAP fragments turn into potent proapoptotic molecules.  相似文献   

19.
MCL-1 inhibits BAX in the absence of MCL-1/BAX Interaction   总被引:1,自引:0,他引:1  
The BCL-2 family of proteins plays a major role in the control of apoptosis as the primary regulator of mitochondrial permeability. The pro-apoptotic BCL-2 homologues BAX and BAK are activated following the induction of apoptosis and induce cytochrome c release from mitochondria. A second class of BCL-2 homologues, the BH3-only proteins, is required for the activation of BAX and BAK. The activity of both BAX/BAK and BH3-only proteins is opposed by anti-apoptotic BCL-2 homologues such as BCL-2 and MCL-1. Here we show that anti-apoptotic MCL-1 inhibits the function of BAX downstream of its initial activation and translocation to mitochondria. Although MCL-1 interacted with BAK and inhibited its activation, the activity of MCL-1 against BAX was independent of an interaction between the two proteins. However, the anti-apoptotic function of MCL-1 required the presence of BAX. These results suggest that the pro-survival activity of MCL-1 proceeds via inhibition of BAX function at mitochondria, downstream of its activation and translocation to this organelle.  相似文献   

20.
Ke H  Pei J  Ni Z  Xia H  Qi H  Woods T  Kelekar A  Tao W 《Experimental cell research》2004,298(2):329-338
Lats2, also known as Kpm, is the second mammalian member of the novel Lats tumor suppressor gene family. Recent studies have demonstrated that Lats2 negatively regulates the cell cycle by controlling G1/S and/or G2/M transition. To further understand the role of Lats2 in the control of human cancer development, we have expressed the protein in human lung cancer cells by transduction of a replication-deficient adenovirus expressing human Lats2 (Ad-Lats2). Using a variety of techniques, including Annexin V uptake, cleavage of PARP, and DNA laddering, we have demonstrated that the ectopic expression of human Lats2 induced apoptosis in two lung cancer cell lines, A549 and H1299. Caspases-3, 7, 8, and 9 were processed in the Ad-Lats2-transduced cells; however, it was active caspase-9, not caspase-8, that initiated the caspase cascade. Inhibitors specific to caspase-3 and 9 delayed the onset of Lats2-mediated apoptosis. Western blot analysis revealed that anti-apoptotic proteins, BCL-2 and BCL-x(L), but not the pro-apoptotic protein, BAX, were downregulated in Ad-Lats2-transduced human lung cancer cells. Overexpression of either Bcl-2 or Bcl-x(L) in these cells lead to the suppression of Lats2-mediated caspase cleavage and apoptosis. These results show that Lats2 induces apoptosis through downregulating anti-apoptotic proteins, BCL-2 and BCL-x(L), in human lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号