首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the mud habitat during the filling of two new lakes   总被引:3,自引:0,他引:3  
An attempt is made to illustrate some of the principles of early development of muds in two contrasting lake basins which were devoid of vegetation cover before filling. Essentially the changes involve the dispersion and redistribution of particles in the newly flooded lake bottom. Field and laboratory observations are presented to demonstrate the interaction that exists between water chemistry, wave erosion and the burrowing activity of mud-dwelling insect larvae, and the effect of these factors on particle size sorting in the substrate. These characteristic changes in the mud during filling are compared with post-filling stage developments in which the role of extraneous material, including organic matter, may predominate.  相似文献   

2.
Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.  相似文献   

3.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

4.
Qian  Fang-Ping  Wen  Xin-Li  Xi  Yi-Long 《Limnology》2022,23(1):165-180
Limnology - In this study, the annual changes of rotifer communities were observed in six lakes belonging to tropical, subtropical, and warm temperate zones. Rotifers were classified into different...  相似文献   

5.
Despite considerable attention in recent years, the composition and dynamics of lake bacterial communities over annual time scales are poorly understood. This study used automated ribosomal intergenic spacer analysis (ARISA) to explore the patterns of change in lake bacterial communities in three temperate lakes over 2 consecutive years. The study lakes included a humic lake, an oligotrophic lake, and a eutrophic lake, and the epilimnetic bacterial communities were sampled every 2 weeks. The patterns of change in bacterial communities indicated that seasonal forces were important in structuring the behavior of the bacterial communities in each lake. All three lakes had relatively stable community composition in spring and fall, but summer changes were dramatic. Summertime variability was often characterized by recurrent drops in bacterial diversity. Specific ARISA fragments derived from these lakes were not constant among lakes or from year to year, and those fragments that did recur in lakes in different years did not exhibit the same seasonal pattern of recurrence. Nonetheless, seasonal patterns observed in 2000 were fairly successful predictors of the rate of change in bacterial communities and in the degree of autocorrelation of bacterial communities in 2001. Thus, seasonal forces may be important structuring elements of these systems as a whole even if they are uncoupled from the dynamics of the individual system components.  相似文献   

6.
1. Rapid environmental change occurring in high‐latitude regions has the potential to cause extensive thawing of permafrost. Retrogressive thaw slumps are a particularly spectacular form of permafrost degradation that can significantly impact lake–water chemistry; however, to date, the effects on aquatic biota have received little attention. 2. We used a diatom‐based palaeolimnological approach featuring a paired lake study design to examine the impact of thaw slumping on freshwater ecosystems in the low Arctic of western Canada. We compared biological responses in six lakes affected by permafrost degradation with six undisturbed, reference lakes. 3. Slump‐affected lakes exhibited greater biological change than the paired reference systems, although all systems have undergone ecologically significant changes over the last 200 years. Four of the six reference systems showed an increase in the relative abundance of planktonic algal taxa (diatoms and scaled chrysophytes), the earliest beginning about 1900, consistent with increased temperature trends in this region. 4. The response of sedimentary diatoms to thaw slumping was understandably variable, but primarily related to the intensity of disturbance and associated changes in aquatic habitat. Five of the slump‐affected lakes recorded increases in the abundance and diversity of periphytic diatoms at the presumed time of slump initiation, consistent with increased water clarity and subsequent development of aquatic macrophyte communities. Slump‐affected lakes generally displayed lower nutrient levels; however, in one system, thaw slumping, induced by an intense fire at the site in 1968, ostensibly led to pronounced nutrient enrichment that persists today. 5. Our results demonstrate that retrogressive thaw slumping represents an important stressor to the biological communities of lakes in the western Canadian Arctic and can result in a number of limnological changes. We also show that palaeolimnological methods are effective for inferring the timing and response of aquatic ecosystems to permafrost degradation. These findings provide the first long‐term perspective on the biological response to permafrost thaw, a stressor that will become increasingly important as northern landscapes respond to climate change.  相似文献   

7.
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.  相似文献   

8.
An extension of the floodpulse concept (FPC) for lakes   总被引:2,自引:0,他引:2  
This paper delivers a conceptual framework for the ecological functioning and biodiversity patterns of lakes that is based on the floodpulse concept (FPC). The specific characteristics of rivers and lakes considering water-level fluctuations are compared, with respect to catchment linkages, temporal patterns, and hydraulic forces of flooding and drawdown. The influences of floodpulses on element cycles, biodiversity, and adaptations of lake biota are analyzed, and the importance of multi-annual flooding cycles is highlighted. The degree by which these water-level fluctuations influence lake ecosystems strongly depends on lake morphology, where shallow lakes or those with large shallow margins are the most sensitive. Although floodpulses play a major role for ecosystem services such as lake management and climate change mitigation schemes, this issue is only scarcely dealt with. Tenets of the extended FPC for lakes are formulated in order to overcome this problem.  相似文献   

9.
Climate change and invasive species are two stressors that should have large impacts on native species in aquatic and terrestrial ecosystems. We quantify and integrate the effects of climate change and the establishment of an invasive species (smallmouth bass Micropterus dolomieu ) on native lake trout Salvelinus namaycush populations. We assembled a dataset of almost 22 000 Canadian lakes that contained information on fish communities, lake morphologies, and geography. We examined the pelagic-benthic and littoral forage fish community available to lake trout populations across three lake size classes in these aquatic ecosystems. Due to the decreased presence of alternate prey resources, lake trout populations residing in smaller lakes are more vulnerable to the effects of smallmouth bass establishment. A detailed spatially and temporally explicit approach to assess smallmouth bass invasion risk in Ontario lakes suggests that the number of Ontario lakes with vulnerable lake trout populations could increase from 118 (~1%) to 1612 (~20%) by 2050 following projected climate warming. In addition, we identified nearly 9700 lake trout populations in Canada threatened by 2100, by the potential range expansion of smallmouth bass. Our study provides an integration of two major stressors of ecosystems, namely climate change and invasive species, by considering climate-change scenarios, dispersal rates of invasive species, and inter-specific biotic interactions.  相似文献   

10.
Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine–coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six- or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high.  相似文献   

11.
J. Kalff  Watson 《Hydrobiologia》1986,138(1):161-176
Temporal patterns of phytoplankton biomass and community structure are described for two Kenyan lakes and subsequently compared with patterns reported in other tropical and temperate lakes. Lake Naivasha had a lower and more seasonally variable (10×) biomass, with a seasonal shift between diatoms and blue-greens, while the L. Oloidien biomass was less variable (3.7×) and dominated by blue-greens. Biomass and chlorophyll a were strongly correlated and in turn were coupled to the level of total phosphorus. A total of 143 and 94 taxa were described for L. Naivasha and L. Oloidien, respectively.The comparative analysis showed: a) a paucity of exclusively tropical species; b) that more than 30 percent of the species in two highly saline Kenyan lakes were also present in the two freshwater lakes; c) no evidence for a postulated decline of phytoplankton species abundance with latitude from the temperate zone to the tropics; d) that the low fraction of chrysophyte biomass in tropical lakes is a function of trophy rather than of latitude; e) that the fraction of chlorophyte biomass in tropical lakes is generally higher than in temperate lakes; f) that the proportion of nannoplankton in the two Kenyan freshwater lakes is not different from that in temperate lakes of the same trophy; g) that seasonal or annual biomass oscillations in the tropics are not systematically lower than in the temperate zone; h) evidence for large inter-year difference in the max.:min. biomass ratio in the only tropical lake (L. Naivasha) for which such data are available; i) that an average biomass ratio appears predictable for tropical lakes from the proportion of the sediment surface in contact with epilimnetic water. Overall, no evidence was found that the freshwater tropical phytoplankton composition or dynamics differ in any fundamental fashion from that observed in the temperate lakes during the summer.Contribution number 147 of the Limnology Research Centre, McGill University.  相似文献   

12.
Residential development of lakeshores is expected to change a variety of key lake features that include increased nutrient loading, increased invasion rate of nonnative species, increased exploitation rates of fishes by anglers, and alteration of littoral habitats. All of these factors may alter the capacity of lakes to support productive native fish populations. Fourteen north temperate lakes were surveyed to examine how growth rates of two common fish species (bluegill sunfish, Lepomis macrochirus; largemouth bass, Micropterus salmoides) varied along a residential development gradient. Size-specific growth rates for both species were negatively correlated with the degree of lakeshore residential development, although this trend was not statistically significant for largemouth bass. On average, annual growth rates for bluegill sunfish were 2.6 times lower in heavily developed lakes than in undeveloped lakes. This effect of lakeshore development on fish growth was not size specific for bluegills between 60 and 140 mm in total length. An index of population production rate that accounted for both the size-specific growth rate and the size distribution of fishes showed that bluegill populations were approximately 2.3 times less productive in highly developed lakes than in undeveloped lakes. Our results suggest that extensive residential development of lakeshores may reduce the fish production capacity of aquatic ecosystems. Received 29 April 1999; Accepted 26 October 1999.  相似文献   

13.
The anticipated impacts of climate change on aquatic biota are difficult to evaluate because of potentially contrasting effects of temperature and hydrology on lake ecosystems, particularly those closed‐basin lakes within semiarid regions. To address this shortfall, we quantified decade‐scale changes in chemical and biological properties of 20 endorheic lakes in central North America in response to a pronounced transition from a drought to a pluvial period during the early 21st century. Lakes exhibited marked temporal changes in chemical characteristics and formed two discrete clusters corresponding to periods of substantially different effective moisture (as Palmer Drought Severity Index, PDSI). Discriminant function analysis (DFA) explained 90% of variability in fish assemblage composition and showed that fish communities were predicted best by environmental conditions during the arid interval (PDSI 相似文献   

14.
Shallow lakes have become the archetypical example of ecosystems with alternative stable states. However, since the early conception of that theory, the image of ecosystem stability has been elaborated for shallow lakes far beyond the simple original model. After discussing how spatial heterogeneity and fluctuation of environmental conditions may affect the stability of lakes, we review work demonstrating that the critical nutrient level for lakes to become turbid is higher for smaller lakes, and seems likely to be affected by climatic change too. We then show how the image of just two contrasting states has been elaborated. Different groups of primary producers may dominate shallow lakes, and such states dominated by a particular group may often represent alternative stable states. In tropical lakes, or small stagnant temperate waters, free-floating plants may represent an alternative stable state. Temperate shallow lakes may be dominated alternatively by charophytes, submerged angiosperms, green algae or cyanobacteria. The change of the lake communities along a gradient of eutrophication may therefore be seen as a continuum in which gradual species replacements are interrupted at critical points by more dramatic shifts to a contrasting alternative regime dominated by different species. The originally identified shift between a clear and a turbid state remains one of the more dramatic examples, but is surely not the only discontinuity that can be observed in the response of these ecosystems to environmental change.  相似文献   

15.
African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R2adj = 0.23, e.d.f. = 7, p<0.0001) in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.  相似文献   

16.
J. Kalff 《Hydrobiologia》1983,100(1):101-112
Two of three Kenyan lakes studied between November 1979 and October 1980 have very short 33PO4 turnover times, indicating a high phosphorus (P) demand throughout the year. The P turnover time in Lakes Oloidien and Sonachi is as rapid as in the most P deficient temperate zone lakes. The third lake, Lake Naivasha, has a lower overall P demand and a wide seasonal range, with lowest demand between November 1979 and February 1980 when a P deficiency was unlikely. On an annual basis the Lake Naivasha status is, however, not statistically different from that recorded during the summer in Lake Memphremagog, a generally P-limited temperate zone lake. Lake Naivasha and Lake Oloidien fit well to the line of best fit for the Dillon-Rigler relationship relating total phosphorus (TP) and chlorophyll a derived in temperate zone lakes. Thus, temperate zone models predicting aspects of lake behaviour on the basis of TP may also be applicable to these two tropical lakes. Saline lake Sonachi had not only a short P turnover time but also responded dramatically to the fertilization of enclosures with P. However, it does not fit the TP-chla or the total nitrogen-chla plots from the temperate zone. This suggests that, in this saline lake at least, much of the TP is unavailable to the algae, with some of it in a particulate form that is readily extracted with boiling water. The epilimnetic N:P ratios also characterize lakes Oloidien and Sonachi lakes as highly P deficient and lake Naivasha as more moderately P limited. A single set of measurements in Winam Gulf (Lake Victoria) also showed a rapid P turnover time and thus P limitation, but as in lake Sonachi much of the TP was in a non-algal particulate form. Occasional measurements in three other hypertrophic and saline lakes suggest them to be primarily light limited on the basis of their very high photosynthetic cover. These findings support the hypothesis of a primary P limitation for those lakes not light limited, and contradicts literature suggestions that nitrogen is the primary limiting element in tropical lakes.  相似文献   

17.
Omnivory does not prevent trophic cascades in pelagic food webs   总被引:2,自引:0,他引:2  
1. Strong trophic cascades have been well documented in pelagic food webs of temperate lakes. In contrast, the limited available evidence suggests that strong cascades are less typical in tropical lakes.
2. To measure the effects of omnivorous tilapia on planktonic communities and water transparency of a small man-made tropical lake, we performed a 5-week in situ enclosure experiment with five densities of fish randomly allocated to 20 enclosures. Zooplankton and Phytoplankton biomasses as well as water transparency were measured weekly.
3. Results show that omnivorous tilapia significantly decreased the abundance of large Cladocerans, increased the abundance of small algae (greatest axial linear dimension <50  μ m) and decreased water transparency as predicted by trophic cascade theory.
4. Therefore, omnivory was not a sufficient factor to prevent a trophic cascade in this pelagic community, although the cascade effect was weaker than reported from many north temperate, nutrient-rich lakes.  相似文献   

18.
In this study, we examined how the biomass and species composition of aquatic plant communities relates to cottage development of Canadian Shield lakes. Within the North Kawartha Region of Ontario, we sampled the macrophyte communities at two water depths (0.5 m and 1.5 m) in lakes (n = 12) having a range of cottage densities (0-23 cottages km−1 of shoreline). Across all lakes, 39 species were found, with individual lake richness ranging from six to ten. Macrophyte biomass decreased with increasing cottage density, irrespective of depth (ANCOVA dev’t*depth p = 0.925). In contrast, only the shallower depth showed a relationship between cottage development and richness and diversity; highly developed lakes had three or fewer species and diversities less than 1.5. There was also a shift in structural plant type from floating leaf and emergent on undeveloped lakes to submersed and submersed low-lying on developed lakes. Ordination analysis demonstrated that cottage development (and to a lesser extent, lake area) was strongly correlated (p = 0.05) with community species composition in southern Ontario lakes. Our results thus demonstrate that the management of cottage development should minimize the loss of biomass and species richness of aquatic plants given the likely negative effects of these alterations on other taxa in littoral zones and foodwebs in lake ecosystems.  相似文献   

19.
The field of lake palaeoecology has undergone significant changes. Powerful quantitative techniques have been developed to investigate anthropogenic impacts on lakes. Inclusion of zooplankton and benthic chydorid cladocerans has provided previously unavailable information on the historical development of planktivorous fish populations, submerged macrophytes and lake production, and has been used to document exotic species introductions, rapid genetic evolution and human disturbance of lakes. In particular, new techniques now allow a more complete evaluation of changes in past and present trophic structure to be made, and provide insights on the rapid evolutionary responses of aquatic invertebrate communities to anthropogenic perturbation of lakes.  相似文献   

20.
An Analysis of Fish Species Richness in Natural Lakes   总被引:1,自引:0,他引:1  
There is a growing recognition of the need to conserve biodiversity that has been conceptualised in the Convention of Biological Diversity. Maintenance of fish species richness is particularly important, because habitat degradation in inland waters continues to accelerate on a global scale. Here we develop empirical models for predicting fish species richness in natural lakes in various geographical regions of the world. In tropical lakes where fish biodiversity is richer than in temperate lakes, fish species richness can be predicted by a few variables such as lake area and altitude. Low fish species richness in most temperate lakes might be due to the effect of glaciation on colonisation and speciation of fishes. In US, Canadian and northern European lakes, lake acidification is one of the important factors influencing fish species richness. Although limnological characteristics influence fish species richness in temperate lakes, lake area and altitude have greater predictive power. This is in contrast to fish species richness in rivers, which can be reliably predicted by basin area. In the power curves, which describe the relationship between fish species richness and habitat size in lakes and rivers, the exponent is always greater in tropical regions than in temperate regions. Because fish biodiversity is greater in the tropics threats to fish biodiversity through habitat degradation are greater than those in temperate inland waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号