首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using subsite coupling to predict signal peptides   总被引:5,自引:0,他引:5  
Given a nascent protein sequence, how can one predict its signal peptide or "Zipcode" sequence? This is a first important problem for scientists to use signal peptides as a vehicle to find new drugs or to reprogram cells for gene therapy. Based on a model that takes into account the coupling effect among some key subsites, the so-called [-3, -1, +1] coupling model, a new prediction algorithm is developed. The overall rate of correct prediction for 1939 secretory proteins and 1440 non-secretary proteins was over 92%. It has not escaped our attention that the new method may also serve as a useful tool for helping investigate further many unclear details regarding the molecular mechanism of the ZIP code protein-sorting system in cells.  相似文献   

2.
Functioning as an "address tag" or "zip code" that guides nascent proteins (newly synthesized proteins in the cytosol) to wherever they are needed, signal peptides (also called targeting signals or signal sequences) have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for quickly and accurately identifying the signal peptide for a given nascent protein. With the avalanche of new protein sequences generated in the post-genomic era, the challenge has become even more urgent and critical. In this paper, five statistical rulers were derived via performing a mutual information analysis. By combining these statistical rulers, a new prediction algorithm was established and high success prediction rates were observed. The new algorithm may play a complementary role to the existing algorithms in this area. It is anticipated that the mutual information approach introduced here may be very useful for studying many other sequence-coupling problems in molecular biology as well.  相似文献   

3.
It is widely assumed that the functional activity of signal sequences has been conserved throughout evolution, at least between Gram-negative bacteria and eukaryotes. The ovalbumin family of serine protease inhibitors (serpins) provides a unique tool to test this assumption, since individual members can be secreted (ovalbumin), cytosolic (leukocyte elastase inhibitor, LEI), or targeted to both compartments (plasminogen activator inhibitor 2, PAI-2). The facultative secretion of PAI-2 is mediated by a signal sequence proposed to be inefficient by design. We show here that the same internal domain that promotes an inefficient translocation of murine PAI-2 in mammalian cells is a weak signal sequence in Escherichia coli. In contrast, the ovalbumin signal sequence is much more efficient, whereas the corresponding sequence elements from LEI, maspin and PI-10 are entirely devoid of signal sequence activity in E.coli. Mutations that improve the activity of the PAI-2 signal sequence and that convert the N-terminal regions of maspin and PI-10 into efficient signal sequences have been characterized. Taken together, these results indicate that several structural features contribute to the weak activity of the PAI-2 signal sequence and provide new insights into the plasticity of the "hydrophobic core" of signal sequences. High-level expression of two chimeric proteins containing the PAI-2 signal sequence is toxic, and the reduced viability is accompanied by a rapid decrease in the membrane proton motive force, in ATP levels and in translation. In unc- cells, which lack the F0F1 ATP-synthase, the chimeric proteins retain their toxicity and their expression only affected the proton motive force. Thus, the properties of these toxic signal sequences offer a new tool to dissect the interactions of signal sequences with the protein export machinery.  相似文献   

4.
Liu DQ  Liu H  Shen HB  Yang J  Chou KC 《Amino acids》2007,32(4):493-496
Summary. A newly synthesized secretory protein in cells bears a special sequence, called signal peptide or sequence, which plays the role of “address tag” in guiding the protein to wherever it is needed. Such a unique function of signal sequences has stimulated novel strategies for drug design or reprogramming cells for gene therapy. To realize these new ideas and plans, however, it is important to develop an automated method for fast and accurately identifying the signal sequences or their cleavage sites. In this paper, a new method is developed for predicting the signal sequence of a query secretory protein by fusing the results from a series of global alignments through a voting system. The very high success rates thus obtained suggest that the novel approach is very promising, and that the new method may become a useful vehicle in identifying signal sequence, or at least serve as a complementary tool to the existing algorithms of this field.  相似文献   

5.
Prediction of signal peptides using scaled window   总被引:3,自引:0,他引:3  
Kuo-Chen Chou   《Peptides》2001,22(12):1973-1979
Cells use a ZIP code system to sort newly synthesized proteins and deliver them wherever they are needed: into different internal compartments called organelles or even out of the cell altogether. One of the most essential features of the ZIP code system is the signal sequence or “address tag,” which is originally present in the N-terminal part of the protein and is trimmed away by the time it is secreted. Owing to the importance of signal peptides for understanding the molecular mechanisms of genetic diseases, reprogramming cells for gene therapy, and constructing new drugs for correcting a specific defect, it is highly desirable to develop a fast and accurate method to identify the signal peptides. In this paper, a scaled window model is proposed. Based on such a model as well as Markov chain theory, a new algorithm is formulated for predicting the signal peptides. Test results for the 1939 secretory proteins and 1440 non-secretary proteins have indicated that the new algorithm is particularly successful in the overall success rate, and hence can serve as a complementary tool to the existing algorithms for signal peptide prediction.  相似文献   

6.
Signal-3L: A 3-layer approach for predicting signal peptides   总被引:3,自引:0,他引:3  
Functioning as an "address tag" that directs nascent proteins to their proper cellular and extracellular locations, signal peptides have become a crucial tool in finding new drugs or reprogramming cells for gene therapy. To effectively and timely use such a tool, however, the first important thing is to develop an automated method for rapidly and accurately identifying the signal peptide for a given nascent protein. With the avalanche of new protein sequences generated in the post-genomic era, the challenge has become even more urgent and critical. In this paper, we have developed a novel method for predicting signal peptide sequences and their cleavage sites in human, plant, animal, eukaryotic, Gram-positive, and Gram-negative protein sequences, respectively. The new predictor is called Signal-3L that consists of three prediction engines working, respectively, for the following three progressively deepening layers: (1) identifying a query protein as secretory or non-secretory by an ensemble classifier formed by fusing many individual OET-KNN (optimized evidence-theoretic K nearest neighbor) classifiers operated in various dimensions of PseAA (pseudo amino acid) composition spaces; (2) selecting a set of candidates for the possible signal peptide cleavage sites of a query secretory protein by a subsite-coupled discrimination algorithm; (3) determining the final cleavage site by fusing the global sequence alignment outcome for each of the aforementioned candidates through a voting system. Signal-3L is featured by high success prediction rates with short computational time, and hence is particularly useful for the analysis of large-scale datasets. Signal-3L is freely available as a web-server at http://chou.med.harvard.edu/bioinf/Signal-3L/ or http://202.120.37.186/bioinf/Signal-3L, where, to further support the demand of the related areas, the signal peptides identified by Signal-3L for all the protein entries in Swiss-Prot databank that do not have signal peptide annotations or are annotated with uncertain terms but are classified by Signal-3L as secretory proteins are provided in a downloadable file. The large-scale file is prepared with Microsoft Excel and named "Tab-Signal-3L.xls", and will be updated once a year to include new protein entries and reflect the continuous development of Signal-3L.  相似文献   

7.
In the present report we describe the properties of a novel phospho-specific antiserum that has opened a route to the characterization of antigen receptor-activated serine kinase pathways in lymphocytes. The basis for the present work was that Ser-21 in glycogen synthase kinase 3alpha is robustly phosphorylated following antigen receptor triggering. We predicted accordingly that antigen receptors would also stimulate phosphorylation of other proteins with a similar sequence. To test this idea we raised an antibody against the phospho-peptide RARTSpSFAEP, where pS is a phospho-serine corresponding to the glycogen synthase kinase 3alpha Ser-21 sequence. The resulting antiserum was called phospho antibody for proteomics-1 (PAP-1). The present study describes the properties of PAP-1 and shows that it can reveal quite striking differences in the phospho-proteome of different cell types and is able to pinpoint new targets in important signal transduction pathways. PAP-1 was used to map protein phosphorylations regulated by the antigen receptor in T cells. One of these PAP-1-reactive proteins was purified and revealed to be a previously unrecognized target for antigen receptor signal transduction, namely an "orphan" adapter SLY (Src homology 3 (SH3) domain-containing protein expressed in lymphocytes). The use of sera detecting specific phosphorylation sites is thus proved as a powerful method for the discovery of novel downstream components of antigen receptor signals in T cells.  相似文献   

8.
Kang K  Schnetkamp PP 《Biochemistry》2003,42(31):9438-9445
Retinal rod and cone photoreceptors express two distinct Na(+)/Ca(2+)-K(+) exchanger (NCKX) gene products. Both the rod NCKX1 and cone NCKX2 are polytopic membrane proteins thought to contain a putative cleavable signal peptide. A cleavable signal peptide is unusual for plasma membrane proteins; moreover, predictive algorithms suggest the presence of a cleavable signal peptide for all rod NCKX1 proteins and a noncleavable signal anchor for the cone NCKX2 proteins. In this study we have placed a peptide tag at different positions of the NCKX sequence to examine whether the putative signal sequence is indeed cleaved in either NCKX1 or NCKX2 proteins expressed in heterologous systems. The signal peptide was found to be, at least in part, cleaved in dolphin rod NCKX1 and in chicken and human cone NCKX2 expressed in HEK293 cells; no signal peptide cleavage was observed for chicken rod NCKX1 despite the fact that the SignalP predictive algorithm assigned this sequence to have the highest likelihood for a cleavable signal peptide among the three NCKX sequences tested here. For the two NCKX proteins that contained a cleavable signal peptide, only cleaved NCKX protein was found in the plasma membrane of HEK293 cells. Deletion of the signal sequence in both dolphin rod NCKX1 or cone NCKX2 did not affect NCKX protein synthesis but did disrupt plasma membrane targeting as judged from abolition of NCKX function and from lack of surface biotinylation. These results are consistent with delayed signal peptide cleavage for the rod and cone NCKX proteins.  相似文献   

9.
The role of human prostatic acid phosphatase (PAcP, P15309|PPAP_HUMAN) in prostate cancer was investigated using a new proteomics tool termed signal sequence swapping (replacement of domains from the native cleaved amino terminal signal sequence of secretory/membrane proteins with corresponding regions of functionally distinct signal sequence subtypes). This manipulation preferentially redirects proteins to different pathways of biogenesis at the endoplasmic reticulum (ER), magnifying normally difficult to detect subsets of the protein of interest. For PAcP, this technique reveals three forms identical in amino acid sequence but profoundly different in physiological functions, subcellular location, and biochemical properties. These three forms of PAcP can also occur with the wildtype PAcP signal sequence. Clinical specimens from patients with prostate cancer demonstrate that one form, termed PLPAcP, correlates with early prostate cancer. These findings confirm the analytical power of this method, implicate PLPAcP in prostate cancer pathogenesis, and suggest novel anticancer therapeutic strategies.  相似文献   

10.
In Gram-negative bacteria, all the proteins destined for the outer membrane are synthesized with a signal sequence that is cleaved, either by the signal peptidase LepB for integral outer membrane proteins or by LspA for lipoproteins, when they cross the cytoplasmic membrane. The Dickeya dadantii protein PnlH does not possess a cleavable signal sequence but is anchored in the outer membrane by an N-terminal targeting signal. Addition of the 41 N-terminal amino acids of PnlH is sufficient for anchoring various hybrid proteins in the outer membrane. This targeting signal presents some of the characteristics of a Tat (twin arginine translocation) signal sequence but without an obvious cleavage site. We found that the Tat translocation pathway is required for the targeting process. This new mechanism of outer membrane protein targeting is probably widespread as PnlH was also addressed to the outer membrane when expressed in Escherichia coli . As PnlH was not detected as a substrate by Tat signal sequence prediction programmes, this would suggest that there may be many other unknown Tat-dependent outer membrane proteins.  相似文献   

11.
Studying mitochondrial membrane proteins for ion or substrate transport is technically difficult, as the organelles are hidden within the cell interior and thus inaccessible to many conventional nondisruptive techniques. This technical barrier can potentially be overcome if the mitochondrial membrane proteins are targeted to the cell surface, where they can be more readily studied. We undertook experiments presented here to target two related mitochondrial membrane proteins, mitochondrial ATP-binding cassette-1 and -2 protein (mABC1 and mABC2, respectively) to the cell surface for functional studies. These two proteins have an N-terminal mitochondrial targeting signal (MTS), and we hypothesized that removal of this sequence or addition of a cell surface targeting signal would lead to cell membrane targeting of these proteins. When the MTS was removed from mABC1, it localized to intracellular secretory compartments as well as the plasma membrane. However, truncated mABC2 lacking the MTS aggregated inside the cell. Addition of a cell membrane signal sequence or the transmembrane domain from CD8 to the N-terminus of mABC1 or mABC2 resulted in similar subcellular localizations. We then performed patch clamp on cells expressing mABC1 on their surface. These cells exhibited nonselective transport of K(+) and Na(+) ions and resulted in the loss of membrane potential. Our findings open new ways to study mitochondrial membrane proteins in established cell culture systems by targeting them to the cell surface, where they can more reliably be studied using various molecular and cellular techniques.  相似文献   

12.
MMP-9信号肽高效诱导PEX重组蛋白在COS7细胞中分泌表达   总被引:1,自引:1,他引:1  
为了便于收集和纯化, 重组蛋白常需要引导至真核细胞外。蛋白能否分泌主要取决于其是否含有信号肽, 由于不同信号肽诱导蛋白分泌的效率不同,高效信号肽的筛选已成为生物工程领域提高重组蛋白产量的重要策略之一。为了筛选诱导MMP-2 C末端PEX在COS7细胞中高效分泌表达的信号肽,在PEX的N末端分别融合大鼠生长激素(rGH)、小鼠IgG κ链和人基质金属蛋白酶-9(matrix metalloproteinase 9, MMP-9)的信号肽并比较三种信号肽引导PEX分泌表达的效率。Western免疫印迹和ELISA蛋白定量检测表明MMP-9的信号肽引导PEX蛋白分泌的效率约为其它两种信号肽的两倍。利用Ni-NTA亲和柱对细胞培养基中的PEX进行纯化,蛋白产量约为1mg/L,纯化的PEX重组蛋白具有抑制鸡尿囊膜(chorioallantoic membrane,CAM)血管发生的作用。以上结果提示MMP-9的信号肽有效诱导具有生物活性的PEX重组蛋白在COS7细胞中分泌表达。  相似文献   

13.
Open reading frames in the genome of Saccharomyces cerevisiae were screened for potential glycosylphosphatidylinositol (GPI)-attached proteins. The identification of putative GPI-attached proteins was based on three criteria: the presence of a GPI-attachment signal sequence, a signal sequence for secretion and a serine- or threonine-rich sequence. In all, 53 ORFs met these three criteria and 38 were further analyzed as follows. The sequence encoding the 40 C-terminal amino acids of each was fused with the structural gene for a reporter protein consisting of a secretion signal, α-galactosidase and a hemagglutinin (HA) epitope, and examined for the ability to become incorporated into the cell wall. On this basis, 14 of fusion proteins were classified as GPI-dependent cell wall proteins because cells expressing these fusion proteins: (i) had high levels of α-galactosidase activity on their surface; (ii) released significant amounts of the fusion proteins from the membrane on treatment with phosphatidylinositol-specific phospholipase C (PI-PLC); and (iii) released fusion proteins from the cell wall following treatment with laminarinase. Of the 14 identified putative GPI-dependent cell wall proteins, 12 had novel ORFs adjacent to their GPI-attachment signal sequence. Amino acid sequence alignment of the C-terminal sequences of the 12 ORFs, together with those of known cell wall proteins, reveals some sequence similarities among them.  相似文献   

14.
The RNase gene superfamily combines functionally divergent proteins which share statistically significant sequence similarity. Known members assigned to this family include secretory and nonsecretory RNases; angiogenin; eosinophil cationic protein; eosinophil-derived neurotoxin; sialic-acid binding lectin and anti-tumor protein P-30. We report the cDNA cloning of the chicken RNase Super Family Related (RSFR) gene that is specifically overexpressed in normal bone marrow cells and bone marrow-derived AMV transformed monoblasts. It codes for a 139 amino acid protein with a putative signal peptide and remarkable conservation of active-site residues, other residues known to be important for substrate binding and catalytic activity and half-cystine residues common for all RNase family members. Phylogenetic tree analysis shows that RSFR defines a new group of genes within the family. We also conclude that an amino acid sequence block CKXXNTF(X) 11C is a "shortest RNase superfamily signature" which is both necessary and sufficient to identify all previously recognized family members as well as chicken RSFR.  相似文献   

15.
In all plants and algae, most plastid proteins are encoded by the nuclear genome and, consequently, need to be transported into plastids across multiple membranes. In organisms with secondary plastids, which evolved by secondary endosymbioses, and are surrounded by three or four envelope membranes, precursors of nuclear-encoded plastid proteins generally have an N-terminal bipartite targeting sequence that consists of an endoplasmic reticulum (ER)-targeting signal peptide (SP) and a transit peptide-like (TPL) sequence. The bipartite targeting sequences have been demonstrated to be necessary and sufficient for targeting proteins into the plastids of many algal groups, including chlorarachniophytes. Here, we report a new type of targeting signal that is required for delivering a RubisCO small subunit (RbcS) protein into the secondary plastids of chlorarachniophyte algae. In this study, we analyzed the plastid-targeting ability of an RbcS pre-protein, using green fluorescent protein (GFP) as a reporter molecule in chlorarachniophyte cells. We demonstrate that the N-terminal bipartite targeting sequence of the RbcS pre-protein is not sufficient, and that a part of the mature protein is also necessary for plastid targeting. By deletion analyses of amino acids, we determined the approximate location of an internal plastid-targeting signal within the mature protein, which is involved in targeting the protein from the ER into the chlorarachniophyte plastids.  相似文献   

16.
Open reading frames in the genome of Saccharomyces cerevisiae were screened for potential glycosylphosphatidylinositol (GPI)-attached proteins. The identification of putative GPI-attached proteins was based on three criteria: the presence of a GPI-attachment signal sequence, a signal sequence for secretion and a serine- or threonine-rich sequence. In all, 53 ORFs met these three criteria and 38 were further analyzed as follows. The sequence encoding the 40 C-terminal amino acids of each was fused with the structural gene for a reporter protein consisting of a secretion signal, α-galactosidase and a hemagglutinin (HA) epitope, and examined for the ability to become incorporated into the cell wall. On this basis, 14 of fusion proteins were classified as GPI-dependent cell wall proteins because cells expressing these fusion proteins: (i) had high levels of α-galactosidase activity on their surface; (ii) released significant amounts of the fusion proteins from the membrane on treatment with phosphatidylinositol-specific phospholipase C (PI-PLC); and (iii) released fusion proteins from the cell wall following treatment with laminarinase. Of the 14 identified putative GPI-dependent cell wall proteins, 12 had novel ORFs adjacent to their GPI-attachment signal sequence. Amino acid sequence alignment of the C-terminal sequences of the 12 ORFs, together with those of known cell wall proteins, reveals some sequence similarities among them. Received: 1 September 1997 / Accepted: 20 November 1997  相似文献   

17.
Neurodegeneration in diseases caused by altered metabolism of mammalian prion protein (PrP) can be averted by reducing PrP expression. To identify novel pathways for PrP down-regulation, we analyzed cells that had adapted to the negative selection pressure of stable overexpression of a disease-causing PrP mutant. A mutant cell line was isolated that selectively and quantitatively routes wild-type and various mutant PrPs for ER retrotranslocation and proteasomal degradation. Biochemical analyses of the mutant cells revealed that a defect in glycosylphosphatidylinositol (GPI) anchor synthesis leads to an unprocessed GPI-anchoring signal sequence that directs both ER retention and efficient retrotranslocation of PrP. An unprocessed GPI signal was sufficient to impart ER retention, but not retrotranslocation, to a heterologous protein, revealing an unexpected role for the mature domain in the metabolism of misprocessed GPI-anchored proteins. Our results provide new insights into the quality control pathways for unprocessed GPI-anchored proteins and identify transamidation of the GPI signal sequence as a step in PrP biosynthesis that is absolutely required for its surface expression. As each GPI signal sequence is unique, these results also identify signal recognition by the GPI-transamidase as a potential step for selective small molecule perturbation of PrP expression.  相似文献   

18.
In contrast to many other peroxisomal proteins catalase A contains at least two peroxisomal targeting signals each sufficient to direct reporter proteins to peroxisomes. One of them resides at the extreme carboxy terminus constituting a new variant of this signal, -SSNSKF, not active in monkey kidney cells (Gould, S. J., G. A. Keller, N. Hosken, J. Wilkinson, and S. Subramani 1989. J. Cell Biol. 108:1657- 1664). However, this signal is completely dispensable for import of catalase A itself. In its amino-terminal third this protein contains another peroxisomal targeting signal sufficient to direct reporter proteins into microbodies. This internal signal depends on the context. The nature of this targeting signal might be a short defined sequence or a structural feature recognized by import factors. In addition, we have demonstrated that the carboxy-terminal seven amino acids of citrate synthase of Saccharomyces cerevisiae encoded by CIT2 and containing the canonical -SKL represents a targeting signal sufficient to direct reporter proteins to peroxisomes.  相似文献   

19.
S-glutathionylation, the reversible formation of mixed disulfides between glutathione(GSH) and cysteine residues in proteins, is a specific form of post-translational modification that plays important roles in various biological processes, including signal transduction, redox homeostasis, and metabolism inside cells. Experimentally identifying S-glutathionylation sites is labor-intensive and time consuming, whereas bioinformatics methods provide an alternative way to this problem by predicting S-glutathionylation sites in silico. The bioinformatics approaches give not only candidate sites for further experimental verification but also bio-chemical insights into the mechanism of S-glutathionylation. In this paper, we firstly collect experimentally determined S-glutathionylated proteins and their corresponding modification sites from the literature, and then propose a new method for predicting S-glutathionylation sites by employing machine learning methods based on protein sequence data. Promising results are obtained by our method with an AUC (area under ROC curve) score of 0.879 in 5-fold cross-validation, which demonstrates the predictive power of our proposed method. The datasets used in this work are available at http://csb.shu.edu.cn/SGDB.  相似文献   

20.
Prediction of protein domain with mRMR feature selection and analysis   总被引:2,自引:0,他引:2  
Li BQ  Hu LL  Chen L  Feng KY  Cai YD  Chou KC 《PloS one》2012,7(6):e39308
The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional annotation. However, although many efforts have been made in this regard, prediction of protein domains from the sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation, residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an independent dataset was around 73%, which was about 28-40% higher than those by the existing method on the same benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity, electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction methods, and that the findings about the key features with high impacts to the domain prediction might provide useful insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many other important topics in protein science and biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号