首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenopus oocytes express mechanosensitive (MS(XO)) channels that can be studied in excised patches of membrane with the patch-clamp technique. This study examines the steady-state kinetic gating properties of MS(XO) channels using detailed single-channel analysis. The open and closed one-dimensional dwell-time distributions were described by the sums of 2-3 open and 5-7 closed exponential components, respectively, indicating that the channels enter at least 2-3 open and 5-7 closed kinetic states during gating. Dependency plots revealed that the durations of adjacent open and closed intervals were correlated, indicating two or more gateway states in the gating mechanism for MS channels. Maximum likelihood fitting of two-dimensional dwell-time distributions to both generic and specific models was used to examine gating mechanism and rank models. A kinetic scheme with five closed and five open states, in which each closed state could make a direct transition to an open state (two-tiered model) could account for the major features of the single-channel data. Two-tiered models that allowed direct transitions to subconductance open states in addition to the fully open state were also consistent with multiple gateway states. Thus, the gating mechanism of MS(XO) channels differs from the sequential (linear) gating mechanisms considered for MS channels in bacteria, chick skeletal muscle, and Necturus proximal tubule.  相似文献   

2.
Single channel kinetics of a glutamate receptor.   总被引:4,自引:3,他引:1       下载免费PDF全文
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.  相似文献   

3.
The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the presence of 10-4 M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating.  相似文献   

4.
Correlations between the durations of adjacent open and shut intervals recorded from ion channels contain information about the underlying gating mechanism. This study presents an additional approach to extracting the correlation information. Detailed correlation information is obtained directly from single-channel data and quantified in a manner that can provide insight into the connections among the states underlying the gating. The information is obtained independently of any specific kinetic scheme, except for the general assumption of Markov gating. The durations of adjacent open and shut intervals are binned into two-dimensional (2-D) dwell-time distributions. The 2-D (joint) distributions are fitted with sums of 2-D exponential components to determine the number of 2-D components, their volumes, and their open and closed time constants. The dependency of each 2-D component is calculated by comparing its observed volume to the volume that would be expected if open and shut intervals paired independently. The estimated component dependencies are then used to suggest gating mechanisms and to provide a powerful means of examining whether proposed gating mechanisms have the correct connections among states. The sensitivity of the 2-D method can identify hidden components and dependencies that can go undetected by previous correlation methods.  相似文献   

5.
An assumption usually made when developing kinetic models for the gating of ion channels is that the transitions among the various states involved in the gating obey microscopic reversibility. If this assumption is incorrect, then the models and estimated rate constants made with the assumption would be in error. This paper examines whether the gating of a large conductance Ca-activated K+ channel in skeletal muscle is consistent with microscopic reversibility. If microscopic reversibility is obeyed, then the number of forward and backward transitions per unit time for each individual reaction step will, on average, be identical and, consequently, the gating must show time reversibility. To look for time reversibility, two-dimensional dwell-time distributions of the durations of open and closed intervals were obtained from single-channel current records analyzed in the forward and in the backward directions. Two-dimensional dwell-time distributions of pairs of open intervals and of pairs of closed intervals were also analyzed to extend the resolution of the method to special circumstances in which intervals from different closed (or open) states might have similar durations. No significant differences were observed between the forward and backward analysis of the two-dimensional dwell-time distributions, suggesting time reversibility. Thus, we find no evidence to indicate that the gating of the maxi K+ channel violates microscopic reversibility.  相似文献   

6.
Models for the gating of ion channels usually assume that the rate constants for leaving any given kinetic state are independent of previous channel activity. Although such discrete Markov models have been successful in describing channel gating, there is little direct evidence for the Markov assumption of time-invariant rate constants for constant conditions. This paper tests the Markov assumption by determining whether the single-channel kinetics of the large conductance Ca-activated K channel in cultured rat skeletal muscle are independent of previous single-channel activity. The experimental approach is to examine dwell-time distributions conditional on adjacent interval durations. The time constants of the exponential components describing the distributions are found to be independent of adjacent interval duration, and hence, previous channel activity. In contrast, the areas of the different components can change. Since the observed time constants are a function of the underlying rate constants for transitions among the kinetic states, the observation of time constants independent of previous channel activity suggests that the rate constants are also independent of previous channel activity. Thus, the channel kinetics are consistent with Markov gating. An observed dependent (inverse) relationship between durations of adjacent open and shut intervals together with Markov gating indicates that there are two or more independent transition pathways connecting open and shut states. Finally, no evidence is found to suggest that gating is not at thermodynamic equilibrium: the inverse relationship was independent of the time direction of analysis.  相似文献   

7.
A model of the gating of ion channels   总被引:4,自引:0,他引:4  
The gating of ion channels in biological membranes has usually been described in terms of Markov transitions between a few discrete open or closed states. Such models predict that the distributions of open and closed durations decay as a sum of exponential terms. Recent experimental data have indicated that certain channels are not easily described by these models. We show that distributions of open and closed times similar to those seen experimentally are predicted by a model that involves only one open and closed state but that assumes the activation energy of the gating process to be stochastic. This model involves only a few parameters and these have direct physical interpretations. Measurements of the correlation between the durations of successive open or closed events is shown to provide an experimental method for distinguishing between this and other models.  相似文献   

8.
The modal gating behavior of single sheep cardiac sarcoplasmic reticulum (SR) Ca2+-release/ryanodine receptor (RyR) channels was assessed. We find that the gating of RyR channels spontaneously shifts between high (H) and low (L) levels of activity and inactive periods where no channel openings are detected (I). Moreover, we find that there is evidence for multiple gating modes within H activity, which we term H1 and H2 mode. Our results demonstrate that the underlying mechanisms regulating gating are similar in native and purified channels. Dwell-time distributions of L activity were best fitted by three open and five closed significant exponential components whereas dwell-time distributions of H1 activity were best fitted by two to three open and four closed significant exponential components. Increases in cytosolic [Ca2+] cause an increase in open probability (Po) within L activity and an increase in the probability of occurrence of H activity. Open lifetime distributions within L activity were Ca2+ independent whereas open lifetime distributions within H activity were Ca2+ dependent. This study is the first attempt to estimate RyR single-channel kinetic parameters from sequences of idealized dwell-times and to develop kinetic models of RyR gating using the criterion of maximum likelihood. We propose distinct kinetic schemes for L, H1, and H2 activity that describe the major features of sheep cardiac RyR channel gating at these levels of activity.  相似文献   

9.
The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 μM) to high (1,024 μM) intracellular concentrations of calcium (Ca2+ i) using single-channel recording. Open probability (P o) increased with increasing Ca2+ i (K 0.5 11.2 ± 0.3 μM at +30 mV, Hill coefficient of 3.5 ± 0.3), reaching a maximum of ∼0.97 for Ca2+ i ∼ 100 μM. Increasing Ca2+ i further to 1,024 μM had little additional effect on either P o or the single-channel kinetics. The channels gated among at least three to four open and four to five closed states at high levels of Ca2+ i (>100 μM), compared with three to four open and five to seven closed states at lower Ca2+ i. The ability of kinetic schemes to account for the single-channel kinetics was examined with simultaneous maximum likelihood fitting of two-dimensional (2-D) dwell-time distributions obtained from low to high Ca2+ i. Kinetic schemes drawn from the 10-state Monod-Wyman-Changeux model could not describe the dwell-time distributions from low to high Ca2+ i. Kinetic schemes drawn from Eigen''s general model for a ligand-activated tetrameric protein could approximate the dwell-time distributions but not the dependency (correlations) between adjacent intervals at high Ca2+ i. However, models drawn from a general 50 state two-tiered scheme, in which there were 25 closed states on the upper tier and 25 open states on the lower tier, could approximate both the dwell-time distributions and the dependency from low to high Ca2+ i. In the two-tiered model, the BK channel can open directly from each closed state, and a minimum of five open and five closed states are available for gating at any given Ca2+ i. A model that assumed that the apparent Ca2+-binding steps can reach a maximum rate at high Ca2+ i could also approximate the gating from low to high Ca2+ i. The considered models can serve as working hypotheses for the gating of BK channels.  相似文献   

10.
The determination of rate constants from single-channel data can be very difficult, in part because the single-channel lifetime distributions commonly analyzed by experimenters often have a complicated mathematical relation to the channel gating mechanism. The standard treatment of channel gating as a Markov process leads to the prediction that lifetime distributions are exponential functions. As the number of states of a channel gating scheme increases, the number of exponential terms in the lifetime distribution increases, and the weights and decay constants of the lifetime distributions become progressively more complicated functions of the underlying rate constants. In the present study a mathematical strategy for inverting these functions is introduced in order to determine rate constants from single-channel lifetime distributions. This inversion is easy for channel gating schemes with two or fewer states of a given conductance, so the present study focuses on schemes with more states. The procedure is to derive explicit equations relating the parameters of the lifetime distribution to the rate constants of the scheme. Such equations can be derived using the equality between symmetric functions of eigenvalues of a matrix and sums over principle minors, as well as expressions for the moments, derivatives, and weights of a lifetime distribution. The rate constants are then obtained as roots to this system of equations. For a gating scheme with three sequential closed states and a single gateway state, exact analytical expressions were found for each rate constant in terms of the parameters of the three-exponential closed-time distribution. For several other gating schemes, systems of equations were found that could be solved numerically to obtain the rate constants. Lifetime distributions were shown to specify a unique set of real rate constants in sequential gating schemes with up to five closed or five open states. For kinetic schemes with multiple gating pathways, the analysis of simulated data revealed multiple solutions. These multiple solutions could be distinguished by examining two-dimensional probability density functions. The utility of the methods introduced here are demonstrated by analyzing published data on nicotinic acetylcholine receptors, GABA(A) receptors, and NMDA receptors.  相似文献   

11.
Ion channels are integral membrane proteins that regulate ionic flux through cell membranes by opening and closing (or gating) their pores. The gating can be monitored by observing step changes in the current flowing through single channels. Analysis of the durations of the open and closed intervals and of the correlations among the interval durations can give insight into the gating mechanism. Although it is well known that the correlation information can be essential to distinguish among possible gating mechanisms, it has been difficult to use this information because it has not been possible to correct the predicted correlations for the distortion of the single-channel data because of filtering and noise. To overcome this limitation we present a method based on a comparison of simulated and experimental two-dimensional dwell-time distributions constructed by analysing simulated and experimental single-channel currents in an identical manner. The simulated currents incorporate the true effects of filtering and noise, the two-dimensional distributions retain the correlation information, and the identical analysis allows direct maximum-likelihood comparison of the simulated and experimental two-dimensional distributions. We show that the two-dimensional simulation method has a greatly increased ability to distinguish among models, compared with methods that use one-dimensional distributions.  相似文献   

12.
13.
Clonal pheochromocytoma (PC-12) cells have four different types of voltage-dependent K+ channels whose activation does not require high concentrations of Ca++ on the cytoplasmic side of the membrane (Hoshi, T., and R. W. Aldrich, 1988, Journal of General Physiology, 91:73-106). The durations of open and closed events of these four different types of voltage-dependent K+ channels were measured using the excised configuration of the patch-clamp method. The open durations of a class of K+ channels termed the Kz channel, which activates rapidly and inactivates slowly in response to depolarizing pulses, had two exponential components. The closed durations of the Kz channel had at least four exponential components. The time constants of the fastest of the two exponential components in the closed durations were very similar to those of the two exponential components present in the first-latency distribution. The first latencies of the Kz channel decreased steeply with depolarization, contributing to the increased probability of the channel being open with depolarization. The Kz channel also had a very slow gating process that resulted in a clustering of blank sweeps. A gating scheme containing two open states and five closed states is consistent with the observations. The Ky channel had one exponential component in the open durations and three exponential components in the closed durations. The first latencies varied greatly depending on the prepulse voltage and duration. The results were consistent with a sequential model with a large number of closed states and one open state. The Kx channel, which required large hyperpolarizing prepulses to remove steady state inactivation and did not show inactivation with maintained depolarization, had two exponential components in the open durations and three exponential components in the closed durations. The burst behavior of the Kx channel involved many more than two states. The transient Kw channel had one exponential component in the open durations and the mean open time increased with depolarization. The first latencies of the Kw channel were steeply dependent on the voltage, decreasing with depolarization.  相似文献   

14.
Ion channels are integral membrane proteins that regulate ionic flux through cell membranes by opening and closing (gating) their pores. The gating can be monitored by observing step changes in the current flowing through single channels, and analysis of the observed open and closed interval durations has provided a window to develop kinetic models for the gating process. One difficulty in developing such models has been to determine the connections (transition pathways) among the various kinetic states involved in the gating. To help overcome this difficulty we present a transform (dependency plot) of the single-channel data that can give immediate insight into the connections. A dependency plot is derived by calculating a contingency table from a two-dimensional (joint density) dwell-time distribution of adjacent open and closed intervals by assuming that the two classified criteria are the open and closed durations of each pair of adjacent intervals. A three-dimensional surface plot of the fractional difference between the numbers of observed interval pairs and the numbers expected if the durations of adjacent intervals are independent then gives the dependency plot. An excess of interval pairs in the dependency plot suggests that the open and closed states (or compound states) that give rise to the interval pairs in excess are directly connected. A deficit of interval pairs suggests that the open and closed states (or compound states) that give rise to the interval pairs in deficit are either not directly connected or that there are additional open-closed transition pathways arising from the directly connected states.  相似文献   

15.
Gigaohm recordings have been made from glutamate receptor channels in excised, outside-out patches of collagenase-treated locust muscle membrane. The channels in the excised patches exhibit the kinetic state switching first seen in megaohm recordings from intact muscle fibers. Analysis of channel dwell time distributions reveals that the gating mechanism contains at least four open states and at least four closed states. Dwell time autocorrelation function analysis shows that there are at least three gateways linking the open states of the channel with the closed states. A maximum likelihood procedure has been used to fit six different gating models to the single channel data. Of these models, a cooperative model yields the best fit, and accurately predicts most features of the observed channel gating kinetics.  相似文献   

16.
Steady-state and kinetic properties of gating currents of the Shaker K+ channels were studied in channels expressed in Xenopus oocytes and recorded with the cut-open oocyte voltage clamp. The charge versus potential (Q-V) curve reveals at least two components of charge, the first moving in the hyperpolarized region (V1/2 = -63 mV) and the second, with a larger apparent valence, moving in the more depolarized region (V1/2 = -44 mV). The kinetic analysis of gating currents revealed also two exponential decaying components that corresponded in their voltage dependence with the charge components described in the steady-state. The first component was found to correlate with the effects of prepulses that produce the Cole-Moore shift of the ionic and gating currents and seems to be occurring completely within closed conformations of the channel. The second component seems to be related to the events occurring between the closed states just preceding, but not including, the transition to the open state. The ON and OFF gating currents exhibit a pronounced rising phase at potentials at which the second component becomes important, and this region corresponds to the potential range where the channel opens. The results could not be explained with simple parallel models, but the data can be fitted to a sequential model that could be related to a first rearrangement of the putative four subunits in cooperative fashion, followed by a concerted charge movement that leads to the open channel. The first series of charge movements are produced by transitions between several closed states carrying less than two electronic charges per step, while a step carrying about 3.5 electronic charges can explain the second component. This step is followed by the transition to the open state carrying less than 0.5 electronic charges. This model is able to reproduce all the kinetic and steady-state properties of the gating currents and predicts many of the properties of the ionic currents.  相似文献   

17.
Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca(2+)-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.  相似文献   

18.
The chemical gating of single-gap junction channels was studied by the dual whole-cell voltage-clamp method in HeLa cells transfected with connexin43 (HeLa43) and in fibroblasts from sciatic nerves. Junctional current (Ij), single-channel conductance, and Ij kinetics were studied in cell pairs during CO2 uncoupling and recoupling at small transjunctional voltages (Vj < 35 mV: Vj gating absent) and at high Vj (Vj > 40 mV: Vj gating strongly activated). In the absence of Vj gating, CO2 exclusively caused Ij slow transitions from open to closed channel states (mean transition time: approximately 10 ms), corresponding to a single-channel conductance of approximately 120 pS. At Vj > 40 mV, Vj gating induced fast Ij flickering between open, gamma j(main state), and residual, gamma j(residual), states (transition time: approximately 2 ms). The ratio gamma j(main state)/gamma j(residual) was approximately 4-5. No obvious correlation between Ij fast flickering and CO2 treatment was noticed. At high Vj, in addition to slow Ij transitions between open and closed states, CO2 induced slow transitions between residual and closed states. During recoupling, each channel reopened by a slow transition (mean transition time: approximately 10 ms) from closed to open state (rarely from closed to residual state). Fast Ij flickering between open and residual states followed. The data are in agreement with the hypothesis that gap junction channels possess two gating mechanisms, and indicate that CO2 induces channel gating exclusively by the slow gating mechanism.  相似文献   

19.
The Ca2+-dependent gating mechanism of cloned BK channels from Drosophila (dSlo) was studied. Both a natural variant (A1/C2/E1/G3/IO) and a mutant (S942A) were expressed in Xenopus oocytes, and single-channel currents were recorded from excised patches of membrane. Stability plots were used to define stable segments of data. Unlike native BK channels from rat skeletal muscle in which increasing internal Ca2+ concentration (Cai2+) in the range of 5 to 30 microM increases mean open time, increasing Cai2+ in this range for dSlo had little effect on mean open time. However, further increases in Cai2+ to 300 or 3000 microM then typically increased dSlo mean open time. Kinetic schemes for the observed Ca2+-dependent gating kinetics of dSlo were evaluated by fitting two-dimensional dwell-time distributions using maximum likelihood techniques and by comparing observed dependency plots with those predicted by the models. Previously described kinetic schemes that largely account for the Ca2+-dependent kinetics of native BK channels from rat skeletal muscle did not adequately describe the Ca2+ dependence of dSlo. An expanded version of these schemes which, in addition to the Ca2+-activation steps, permitted a Ca2+-facilitated transition from each open state to a closed state, could approximate the Ca2+-dependent kinetics of dSlo, suggesting that Ca2+ may exert dual effects on gating.  相似文献   

20.
Two-dimensional probability density analysis of single channel current recordings was applied to two purified channel proteins reconstituted in planar lipid bilayers: Torpedo acetylcholine receptors and voltage-sensitive sodium channels from rat brain. The information contained in the dynamic history of the gating process, i.e., the time sequence of opening and closing events was extracted from two-dimensional distributions of transitions between identifiable states. This approach allows one to identify kinetic models consistent with the observables. Gating of acetylcholine receptors expresses "memory" of the transition history: the receptor has two channel open (O) states; the residence time in each of them strongly depends on both the preceding open time and the intervening closed interval. Correspondingly, the residence time in the closed (C) states depends on both the preceding open time and the preceding closed time. This result confirms the scheme that considers, at least, two transition pathways between the open and closed states and extends the details of the model in that it defines that the short-lived open state is primarily entered from long-lived closed states while the long-lived open state is accessed mainly through short-lived closed states. Since ligand binding to the acetylcholine-binding sites is a reaction with channel closed states, we infer that the longest closed state (approximately 19 ms) is unliganded, the intermediate closed state (approximately 2 ms) is singly liganded and makes transitions to the short open state (approximately 0.5 ms) and the shortest closed state (approximately 0.4 ms) is doubly liganded and isomerizes to long open states (approximately 5 ms). This is the simplest interpretation consistent with available data. In contrast, sodium channels modified with batrachotoxin to eliminate inactivation show no correlation in the sequence of channel opening and closing events, i.e., have no memory of the transition history. This result is, therefore, consistent with any kinetic scheme that considers a single transition pathway between open and closed states, and confirms the C-C-O model previously inferred from one-dimensional distribution analysis. The strategy described should be of general validity in the analysis of single channel events from channel proteins in both natural and reconstituted membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号