首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transglutaminase 1 gene (TGM1) encodes an enzyme necessary for cross-linking the structural proteins that form the cornified envelope, an essential component of the outermost layer of the skin, the stratum corneum. Reported here is the complete coding region of canine TGM1, its chromosome localization, and its map position in the integrated canine linkage-radiation hybrid map. Canine TGM1 consists of 2,448 nucleotides distributed over 15 exons. The nucleotide sequence has 90% identity to human TGM1. The deduced canine TGM1 protein is 816 amino acids long and is 92% identical to human TGM1. Using fluorescence in situ hybridization, we localized canine TGM1 to dog (Canis familiaris) chromosome 8 (CFA 8q). Canine TGM1 localized to CFA 8 on the integrated linkage-radiation hybrid map in the interval FH2149-MYH7. Characterizing the coding region of canine TGM1 is a first step in examining the role of this enzyme in normal and defective cornification in the dog.  相似文献   

2.
Tseng HC  Tang JB  Gandhi PS  Luo CW  Ou CM  Tseng CJ  Lin HJ  Chen YH 《Amino acids》2012,42(2-3):951-960
Formation of copulatory plugs by male animals is a common means of reducing competition with rival males. In mice, copulatory plugs are formed by the coagulation of seminal vesicle secretion (SVS), which is a very viscous and self-clotting fluid containing high concentration of proteins. In its native state, mouse SVS contains a variety of disulfide-linked high-molecular-weight complexes (HMWCs) composed of mouse SVS I-III, which are the major components of mouse SVS. Further, mouse SVS I-III are the substrates for transglutaminase 4 (TGM4), a cross-linking enzyme secreted from the anterior prostate. According to activity assays, mouse TGM4 prefers a mild reducing and alkaline environment. However, under these conditions, the activity of mouse TGM4 toward SVS I-III was much lower than that of a common tissue-type TGM, TGM2. On the other hand, mouse TGM4 exhibited much higher cross-linking activity than TGM2 when native HMWCs containing SVS I-III were used as substrates under non-reducing condition. By the action of TGM4, the clot of SVS became more resistant to proteolysis. This indicates that the activity of TGM4 can further rigidify the copulatory plug and extend its presence in the female reproductive tract. Together with the properties of TGM4 and the nature of its disulfide-linked SVS protein substrates, male mice can easily transform the semen into a rigid and durable copulatory plug, which is an important advantage in sperm competition.  相似文献   

3.
4.
Sun Y  Mi W  Cai J  Ying W  Liu F  Lu H  Qiao Y  Jia W  Bi X  Lu N  Liu S  Qian X  Zhao X 《Journal of proteome research》2008,7(9):3847-3859
Hepatocellular carcinoma (HCC) is one of the most common diseases worldwide, with extremely poor prognosis due to failure in diagnosing it early. Alpha-fetoprotein (AFP) is the only available biomarker for HCC diagnosis; however, its use in the early detection of HCC is limited, especially because about one-third of patients afflicted with HCC have normal levels of serum AFP. Thus, identifying additional biomarkers that may be used in combination with AFP to improve early detection of HCC is greatly needed. A quantitative proteomic analysis approach using stable isotope labeling with amino acids in cell culture (SILAC) combined with LTQ-FT-MS/MS identification was used to explore differentially expressed protein profiles between normal (HL-7702) and cancer (HepG2 and SK-HEP-1) cells. A total of 116 proteins were recognized as potential markers that could distinguish between HCC and normal liver cells. Certain proteins, such as AFP, intercellular adhesion molecule-1 (ICAM-1), IQ motif containing GTPase activating protein 2 (IQGAP2), claudin-1 (CLDN1) and tissue transglutaminase 2 (TGM2), were validated both in multiple cell lines and in 61 specimens of clinical HCC cases. TGM2 was overexpressed in some of the AFP-deficient HCC cells (SK-HEP-1 and Bel-7402) and in about half of the tumor tissues with low levels of serum AFP (17/32, AFP-negative HCC). Trace amounts of TGM2 were found to be expressed in the samples with high serum AFP (26/29, AFP-positive HCC). Moreover, TGM2 expression in liver tissues showed an inverse correlation with the level of serum AFP in HCC patients. Notably, TGM2 existed in the supernatant of the AFP-deficient SK-HEP-1, SMMC-7721 and HLE cells, and it was found to be induced in AFP-producing cells (HepG2) by specific siRNA silence assay. Serum TGM2 levels of 109 HCC patients and 42 healthy controls were further measured by an established ELISA assay; the levels were significantly higher in HCC patients, and they correlated with the histological grade and tumor size. These data suggest that TGM2 may serve as a novel histological/serologic candidate involved in HCC, especially for the individuals with normal serum AFP. These novel findings may provide important clues to identify new biomarkers of HCC and indirectly improve early detection of the disease.  相似文献   

5.
We isolated and characterized the gene encoding human transglutaminase (TG)(X) (TGM5) and mapped it to the 15q15.2 region of chromosome 15 by fluorescence in situ hybridization. The gene consists of 13 exons separated by 12 introns and spans about 35 kilobases. Further sequence analysis and mapping showed that this locus contained three transglutaminase genes arranged in tandem: EPB42 (band 4.2 protein), TGM5, and a novel gene (TGM7). A full-length cDNA for the novel transglutaminase (TG(Z)) was obtained by anchored polymerase chain reaction. The deduced amino acid sequence encoded a protein with 710 amino acids and a molecular mass of 80 kDa. Northern blotting showed that the three genes are differentially expressed in human tissues. Band 4.2 protein expression was associated with hematopoiesis, whereas TG(X) and TG(Z) showed widespread expression in different tissues. Interestingly, the chromosomal segment containing the human TGM5, TGM7, and EPB42 genes and the segment containing the genes encoding TG(C),TG(E), and another novel gene (TGM6) on chromosome 20q11 are in mouse all found on distal chromosome 2 as determined by radiation hybrid mapping. This finding suggests that in evolution these six genes arose from local duplication of a single gene and subsequent redistribution to two distinct chromosomes in the human genome.  相似文献   

6.
Autosomal recessive congenital ichthyosis (ARCI) is a rare, heterogenous keratinization disorder of the skin, classically divided into two clinical subtypes, lamellar ichthyosis (LI) and nonbullous congenital ichthyosiformis erythroderma (CIE). Recently, strong evidence for the involvement of the transglutaminase 1 gene (TGM1) in LI has evolved. We have studied ARCI in the isolated Finnish population, in which recessive disorders are often caused by single mutations enriched by a founder effect. Surprisingly, five different mutations of TGM1 (Arg141His, Arg142Cys, Gly217Ser, Val378Leu, and Arg395Leu) were found in Finnish ARCI patients. In addition to affected LI patients, we also identified TGM1 mutations in CIE patients. Moreover, haplotype analysis of the chromosomes carrying the most common mutation, a C-->T transition changing Arg142 to Cys, revealed that the same mutation has been introduced twice in the Finnish population. In addition to this Arg142Cys mutation, three other mutations, in Arg141 and Arg142, have been described elsewhere, in other populations. These findings suggest that this region of TGM1 is more susceptible to mutation. The corresponding amino acid sequence is conserved in other transglutaminases, but, for example, coagulation factor XIII (FXIII) mutations do not cluster in this region. Protein modeling of the Arg142Cys mutation suggested disruption or destabilization of the protein. In transfection studies, the closely related transglutaminase FXIII protein with the corresponding mutation was shown to be susceptible to degradation in COS cells, further supporting evidence of the destabilizing effect of the Arg142Cys mutation in TGM1.  相似文献   

7.
The mouse Gh/tissue transglutaminase gene (Tgm2), coding a dual-function protein that both binds guanosine triphosphate (GTP) and catalyzes the posttranslational modification of proteins by transamidation of glutamine residues, has been cloned. Sequence analysis of Tgm2 and comparison with the TGase sequences of other species allowed correction of several apparent sequencing artifacts in the Tgm2 cDNA. Tgm2 spans approximately 34 kb and has 13 exons and 12 introns. Although the structure of Tgm2 shows similarity to that of other transglutaminase genes, with introns ranging from 921 bp to >5 kb, several introns differ considerably in size from those of the human Gh gene, TGM2. Tgm2 maps to the distal region of mouse chromosome 2, a region syntenic to human chromosome 20q containing TGM2. Tgm2 is in the vicinity of two uncloned mouse mutations, diminutive (dm) and blind-sterile (bs). Genomic DNA from dm mice was unavailable; however, Southern blot analysis of bs DNA showed no gross rearrangements of Tgm2.  相似文献   

8.
Tissue transglutaminase (TGM2; also known as TG2 or tTG) localizes to the syncytial microvillous membrane (MVM) of the human placenta, the primary interface between maternal and fetal tissue. To identify TGM2 substrates in the MVM, membrane vesicles were prepared and labeled with biotinylated acyl donor or acceptor probes. Biotinylated species were selected on an avidin affinity matrix and identified by mass spectrometry of tryptic peptides. The most abundant were cytoskeletal (actin, tubulin, and cytokeratin) and membrane-associated (annexins, integrins, and placental alkaline phosphatase) proteins. During pregnancy, apoptotic particulate material, the end product of the trophoblast life cycle, is shed from the MVM into maternal circulation. Shed material was isolated from primary trophoblast cultures in which syncytial-like masses develop by fusion. A substantial fraction of actin in the particles was in the form of covalent polymeric aggregates, in contrast to cellular actin, which dissociated completely into monomer in SDS-PAGE. When cells were cultured in the presence of transglutaminase inhibitors, actin in the shed particles remained exclusively in monomeric form, and a reduction in trophoblast intercellular fusion and differentiation was observed. These findings suggest that transglutaminase-mediated cross-linking stabilizes the particulate material shed from the placenta.  相似文献   

9.
Although the basic functions of the prostate gland are conserved among mammals, its morphology varies greatly among species. Comparative studies between mouse and human are important because mice are widely used to study prostate cancer, a disease that occurs in a region-restricted manner within the human prostate. An informatics-based approach was used to identify prostate-specific human genes as candidate markers of region-specific identity that might distinguish prostatic ducts prone to prostate cancer from ducts that rarely give rise to cancer. Subsequent analysis of normal and cancerous human prostates demonstrated that the genes microseminoprotein-beta (MSMB) and transglutaminase 4 (TGM4) were expressed in distinct groups of ducts in the normal human prostate, and only MSMB was detected in areas of prostate cancer. The mouse orthologs of MSMB and TGM4 were then used for expression studies in mice along with the mouse ventrally expressed gene spermine binding protein (SBP). All three genes were informative markers of region-specific epithelial identity with distinct expression patterns that collectively accounted for all ducts in the mouse prostate. Together with the human data, this suggested that MSMB expression defines an anatomical domain in the mouse prostate that is molecularly most similar to human prostate cancers. Computer-assisted serial section reconstruction was used to visualize the complete expression domains for MSMB, SBP, and TGM4 in the mouse prostate. This showed that MSMB is expressed in prostatic ducts that comprise 21% of the mouse dorso-lateral prostate. Finally, the expression of MSMB, SBP, and TGM4 was evaluated in a mouse prostate cancer model created by the prostate epithelium-specific deletion of the tumor suppressor PTEN. MSMB and TGM4 were rapidly and dramatically down-regulated in response to PTEN deletion suggesting that this model of prostate cancer includes a more rapid de-differentiation of the prostatic epithelium than is observed in organ-confined human prostate cancers.  相似文献   

10.
Ichthyosis is a heterogeneous group of keratinization disorders reported both in human and animals. Two rare, inherited forms have been reported in cattle, both characterized by autosomal recessive transmission. Because mutations of transglutaminase 1 (TGM1) gene are associated with autosomal recessive ichthyosis in people, this gene was investigated as a candidate for the diseases in cattle. Three different polymorphisms were identified in 5' end region of cattle TGM1. Marker homozygosity was not found among affected calves. Linkage analysis excluded (logarithmic odds [LOD] score -2.0) TGM1 as the cause for ichthyosis phenotype in the analyzed Chianina cases.  相似文献   

11.
As cartilage is incapable of self-healing upon severe degeneration because of the lack of blood vessels, cartilage tissue engineering is gaining importance in the treatment of cartilage defects. This study was designed to improve cartilage tissue regeneration by expressing tissue transglutaminase variant 2 (TGM2_v2) in mesenchymal stem cells (MSC) derived from bone marrow of rats. For this purpose, rat MSCs transduced with TGM2_v2 were grown and differentiated on three-dimensional polybutylene succinate (PBSu) and poly-l -lactide (PLLA) blend scaffolds. The transduced cells could not only successfully express the short form transglutaminase-2, but also deposited the protein onto the scaffolds. In addition, they could spontaneously produce cartilage-specific proteins without any chondrogenic induction, suggesting that TGM2_v2 expression provided the cells the ability of chondrogenic differentiation. PBSu:PLLA scaffolds loaded with TGM2_v2 expressing MSCs could be used in repair of articular cartilage defects.  相似文献   

12.
The coronavirus disease COVID-19 constitutes the most severe pandemic of the last decades having caused more than 1 million deaths worldwide. The SARS-CoV-2 virus recognizes the angiotensin converting enzyme 2 (ACE2) on the surface of human cells through its spike protein. It has been reported that the coronavirus can mildly infect cats, and ferrets, and perhaps dogs while not pigs, mice, chicken and ducks. Differences in viral infectivity among different species or individuals could be due to amino acid differences at key positions of the host proteins that interact with the virus, the immune response, expression levels of host proteins and translation efficiency of the viral proteins among other factors. Here, first we have addressed the importance that sequence variants of different animal species, human individuals and virus isolates have on the interaction between the RBD domain of the SARS-CoV-2 spike S protein and human angiotensin converting enzyme 2 (ACE2). Second, we have looked at viral translation efficiency by using the tRNA adaptation index. We find that integration of both interaction energy with ACE2 and translational efficiency explains animal infectivity. Humans are the top species in which SARS-CoV-2 is both efficiently translated as well as optimally interacting with ACE2. We have found some viral mutations that increase affinity for hACE and some hACE2 variants affecting ACE2 stability and virus binding. These variants suggest that different sensitivities to coronavirus infection in humans could arise in some cases from allelic variability affecting ACE2 stability and virus binding.  相似文献   

13.
14.
Hyperosmolar‐induced ocular surface cell death is a key mitochondria‐mediated event in inflammatory eye diseases. Transglutaminase (TGM)‐2, a cross‐linking enzyme, is purported to mediate cell death, but its link to mitochondria is unclear. In the cornea, the integrity of the epithelial cells is important for maintaining transparency of the cornea and therefore functional vision. We evaluated the role of TGM‐2 and its involvement in hyperosmolarity‐stimulated mitochondrial cell death in human corneal epithelial (HCE‐T) cells. HCE‐T cell lines stably expressing either shRNA targeting TGM‐2 (shTG) or scrambled shRNA (shRNA) were constructed. Hyperosmolar conditions reduced viability and increased mitochondrial depolarization in shRNA cells. However, hyperosmolarity failed to induce mitochondrial depolarization to the same extent in shTG cells. Transient overexpression of TGM‐2 resulted in very high levels of TGM‐2 expression in shTG and shRNA cells. In the case of shTG cells after overexpression of TGM‐2, hyperosmolarity induced the same extent of mitochondrial depolarization as similarly treated shRNA cells. Overexpression of TGM‐2 also elevated transamidase activity and reduced viability. It also induced mitochondrial depolarization, increased caspase‐3/7 and ‐9 activity, and these increases were partially suppressed by pan‐caspase inhibitor Z‐VAD‐FMK. Corneal epithelial apoptosis via mitochondrial dysfunction after hyperosmolar stimulation is partially dependent on TGM‐2. This TGM‐2‐dependent mechanism occurs in part via caspase‐3/7 and ‐9. Protection against mitochondrial stress in the ocular surface targeting TGM‐2 may have important implications in the survival of cells in hyperosmolar stress. J. Cell. Physiol. 226: 693–699, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Human tissue transglutaminase (TGM2) is implicated in the pathogenesis of several neurodegenerative disorders including Alzheimer's, Parkinson's and expanded polyglutamine (polyQ) diseases. TGM2 promotes formation of soluble and insoluble high molecular weight aggregates by catalyzing a covalent linkage between peptide‐bound Q residues in polyQ proteins and a peptide‐bound Lys residue. Therapeutic approaches to modulate the activity of TGM2 are needed to proceed with studies to test the efficacy of TGM2 inhibition in disease processes. We investigated whether acetylation of Lys‐residues by sulfosuccinimidyl acetate (SNA) or aspirin (ASA) would alter the crosslinking activity of TGM2. Acetylation by either SNA and/or ASA resulted in a loss of >90% of crosslinking activity. The Lys residues that were critical for inhibition were identified by mass spectrometry as Lys444, Lys468, and Lys663. Hence, acetylation of Lys‐residues may modulate the enzymatic function of TGM2 in vivo and offer a novel approach to treatment of TGM2 mediated disorders.  相似文献   

16.
Structure and organization of the human transglutaminase 1 gene.   总被引:9,自引:0,他引:9  
Membrane-associated transglutaminases (TGase1) have recently been found to be common in mammalian cells, but it is not clear whether these derive from the same or different genes. In order to determine the complexity of this system, we have isolated and characterized the human gene (TGM1). The gene of 14,133 base pairs was found to contain 15 exons spliced by 14 introns. Interestingly, the positions of these introns have been conserved in comparison with the genes of two other transglutaminase-like activities described in the literature, but the TGM1 gene is by far the smallest characterized to date because its introns are relatively smaller. On the other hand, the TGase1 enzyme is the largest known transglutaminase (about 90 kDa), apparently because its gene acquired tracts that encode additional sequences on its amino and carboxyl termini that confer its unique properties. Southern blot analyses of total human genomic DNA cut with several restriction enzymes reveal only one band. Use of human-rodent cell hybrid panels and chromosomal in situ hybridization with biotin-labeled probes revealed that the human TGM1 gene maps to chromosome position 14q11.2-13. Such data suggest there is a single gene copy per haploid human genome. Comparisons of sequence identities and homologies indicate that the transglutaminase family of genes arose by duplications and subsequent divergent evolution from a common ancestor but later became scattered in the human genome. Although our present Southern blot and chromosomal localization studies revealed no restriction fragment length polymorphisms, comparisons of published sequences and our genomic clone indicate there are two sequence variants for TGase1 within the human population. The rare smaller variant contains a two-nucleotide deletion near the 5'-end, uses an alternate initiation codon, and differs from the common larger variant only in the first 15 amino acids. Furthermore, the DNA sequences of intron 14 possess several tracts of dinucleotide repeats that by polymerase chain reaction analysis show wide size polymorphism within the human population. Accordingly, this gene system constitutes a useful polymorphic marker for genetic linkage analyses.  相似文献   

17.
Hominoid mating systems show extensive variation among species. The degree of sexual dimorphism in body size and canine size varies among primates in accordance with their mating system, as does the testes size and the consistency of ejaculated semen, in response to differing levels of sperm competition. To investigate patterns of evolution at hominoid seminal proteins and to make inferences regarding the mating systems of extinct taxa, we sequenced the entire coding region of the prostate-specific transglutaminase (TGM4) gene in human, chimpanzee, bonobo, western lowland gorilla, eastern lowland gorilla, orangutan, and siamang, including multiple humans, chimps, and gorillas. Partial DNA sequence of the coding regions was also obtained for one eastern lowland gorilla at the semenogelin genes (SEMG1 and SEMG2), which code for the predominant proteins in semen. Patterns of nucleotide variation and inferred protein sequence change were evaluated within and between species. Combining the present data with previous studies demonstrates a high rate of amino acid substitutions, and low intraspecific variation, at seminal proteins in Pan, presumably driven by strong sperm competition. Both gorilla species apparently possess nonfunctional TGM4, SEMG1, and SEMG2 genes, suggesting that gorillas have had low sperm competition, and therefore their current polygynous mating system, for a long time before their divergence. Similarly, orangutans show longstanding stasis at TGM4, which may be interpreted as evidence for an unchanging mating system for most of their evolution after their divergence from African apes. In contrast to the great apes, the data from humans could be interpreted as evidence of fluctuations between different mating systems or alternatively as a relaxed functional constraint in these proteins. It is our hope that this study is a first step toward developing a model to predict ancestral mating systems from extant molecular data to complement interpretations from the fossil record.  相似文献   

18.
Acquired chemoresistance not only blunts anticancer therapy but may also promote cancer cell migration and metastasis. Our previous studies have revealed that acquired tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in lung cancer cells is associated with Akt-mediated stabilization of cellular caspase 8 and Fas-associated death domain (FADD)-like apoptosis regulator-like inhibitory protein (c-FLIP) and myeloid cell leukemia 1 (Mcl-1). In this report, we show that cells with acquired TRAIL resistance have significantly increased capacities in migration and invasion. By gene expression screening, tissue transglutaminase (TGM2) was identified as one of the genes with the highest expression increase in TRAIL-resistant cells. Suppressing TGM2 dramatically alleviated TRAIL resistance and cell migration, suggesting that TGM2 contributes to these two phenotypes in TRAIL-resistant cells. TGM2-mediated TRAIL resistance is likely through c-FLIP because TGM2 suppression significantly reduced c-FLIP but not Mcl-1 expression. The expression of matrix metalloproteinase 9 (MMP-9) was suppressed when TGM2 was inhibited, suggesting that TGM2 potentiates cell migration through up-regulating MMP-9 expression. We found that EGF receptor (EGFR) was highly active in the TRAIL-resistant cells, and suppression of EGFR dramatically reduced TGM2 expression. We further determined JNK and ERK, but not Akt and NF-κB, are responsible for EGFR-mediated TGM2 expression. These results identify a novel pathway that involves EGFR, MAPK (JNK and ERK), and TGM2 for acquired TRAIL resistance and cell migration in lung cancer cells. Because TGM2 couples TRAIL resistance and cell migration, it could be a molecular target for circumventing acquired chemoresistance and metastasis in lung cancer.  相似文献   

19.
Most meningiomas are benign, but some clinical-aggressive tumors exhibit brain invasion and cannot be resected without significant complications. To identify molecular markers for these clinically-aggressive meningiomas, we performed microarray analyses on 24 primary cultures from 21 meningiomas and 3 arachnoid membranes. Using this approach, increased transglutaminase 2 (TGM2) expression was observed, which was subsequently validated in an independent set of 82 meningiomas by immunohistochemistry. Importantly, the TGM2 expression level was associated with increasing WHO malignancy grade as well as meningioma recurrence. Inhibition of TGM2 function by siRNA or cystamine induced meningioma cell death, which was associated with reduced AKT phosphorylation and caspase-3 activation. Collectively, these findings suggest that TGM2 expression increases as a function of malignancy grade and tumor recurrence and that inhibition of TGM2 reduces meningioma cell growth.  相似文献   

20.
After reading many 2-DE-based articles featuring lists of the differentially expressed proteins, one starts experiencing a disturbing déjà vu. The same proteins seem to predominate regardless of the experiment, tissue or species. To quantify the occurrence of individual differentially expressed proteins in 2-DE experiment reports, we compiled the identities of differentially expressed proteins identified in human, mouse, and rat tissues published in three recent volumes of Proteomics and calculated the appearance of the most predominant proteins in the dataset. The most frequently identified protein is a highly abundant glycolytic enzyme enolase 1, differentially expressed in nearly every third experiment on both human and rodent tissues. Heat-shock protein 27 (HSP27) and heat-shock protein 60 (HSP60) were differentially expressed in about 30 percent of human and rodent samples, respectively. Considering protein families as units, keratins and peroxiredoxins are the most frequently identified molecules, with at least one member of the group being differentially expressed in about 40 percent of all experiments. We suggest that the frequent identification of these proteins must be considered in the interpretation of any 2-DE studies. We consider if these commonly observed changes represent common cellular stress responses or are a reflection of the technical limitations of 2-DE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号