首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We constructed a complete physical map and a partial gene map of the chloroplast genome of Cyclotella meneghiniana Kützing clone 1020-1a (Bacillariophyceae). The 128-kb circular molecule contains a 17-kb inverted repeat, which divides the genome into single copy regions of65 kb and 29 kb. This is the largest genome and inverted repeat found in any diatom examined to date. In addition to the 16S and 23S ribosomal RNA genes, the inverted repeat contains both the ndhD gene (as yet unexamined in other diatoms) and the psbA gene (located similarly in one of two other examined diatoms). The Cyclotella chloroplast genome exists as two equimolar populations of inversion isomers that differ in the relative orientation of their single copy sequences. This inversion heterogeneity presumably results from intramolecular recombination within the inverted repeat. For the first time, we map the ndhD, psaC, rpofi, rpoCl, and rpoC2 genes to the chloroplast genome of a chlorophyll c-containing alga. While the Cyclotella chloroplast genome retains some prokaryotic and land plant gene clusters and operons, it contains a highly rearranged gene order in the large and small single copy regions compared to all other examined diatom, algal, and land plant chloroplast genomes.  相似文献   

2.
High‐copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype‐driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high‐copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar‐coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype‐driven Mu tagging in maize, and could be adapted for use with other high‐copy transposons. A by‐product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources.  相似文献   

3.
Cucurbitaceae are characterized by a high copy number for nuclear ribosomal RNA genes. We have investigated the genomic ribosomal DNA (rDNA) of four closely related species of this family with respect to structure, length heterogeneity, and evolution. InCucumis melo (melon) there are two main length variants of rDNA repeats with 10.7 and 10.55kb.Cucumis sativus (cucumber) shows at least three repeat types with 11.5, 10.5, and 10.2kb.Cucurbita pepo (zucchini) has two different repeat types with 10.0 and 9.3kb. There are also two different repeat types inCucurbita maxima (pumpkin) of about 11.2 and 10.5kb. Restriction enzyme mapping of the genomic rDNA of these four plants and of cloned repeats ofC. sativus shows further heterogeneities which are due to methylation or point mutations. By comparison of the restriction enzyme maps it was possible to trace some evolutionary events in the family ofCucurbitaceae. Some aspects of regulation and function of the middle repetitive rRNA genes (here between 2000 and 10000 copies) are discussed.  相似文献   

4.
Summary We have previously described substantial variation in the level of expression of two linked genes which were introduced into transgenic petunia plants using Agrobacterium tumefaciens. These genes were (i) nopaline synthase (nos) and (ii) a chimeric chlorophyll a/b binding protein/octopine synthase (cab/ocs) gene. In this report we analyze the relationship between the level of expression of the introduced genes and T-DNA structure and copy number in 40 transgenic petunia plants derived from 26 transformed calli. Multiple shoots were regenerated from 8 of these calli and in only 6 cases were multiple regenerated shoots from each callus genotypically identical to each other. Many genotypes showed no nos gene expression (22/28). Most of the plants (16/22) which lacked nos gene expression did contain nos-encoding DNA with the expected restriction enzyme map. Similarly, amongst the genotypes showing no cab/ocs gene expression, the majority (11/28) did not show any alterations in restriction fragments corresponding to the expected cab/ocs coding sequences (10/11). Approximately half of the plants carried multiple copies of T-DNA in inverted repeats about the left or right T-DNA boundaries. No positive correlation was observed between the copy number of the introduced DNA and the level of expression of the introduced genes. However, plants with high copy number complex insertions composed of multiple inverted repeats in linear arrays usually showed low levels of expression of the introduced genes.  相似文献   

5.
6.
Summary Restriction sites on the chloroplast genome of Pinus monticola have been mapped, and the gene for the large subunit of ribulose bisphosphate carboxylase/oxygenase, the genes for the photosystem II polypeptides psbA, psbD and psbC, and the 16S and 23S ribosomal RNA genes have been located. The genome lacks the large inverted repeat characteristic of most angiosperms. The gene order is similar to that found in P. radiata. The presence of dispersed repeated sequences is likely. Two structural features, lack of a large inverted repeat and the presence of dispersed repeats, may confer a degree of variability on the genome which will prove useful in studies of population structure.  相似文献   

7.
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.  相似文献   

8.
Summary We have carried out a molecular and genetic analysis of the chloroplast ATPase in Chlamydomonas reinhardtii. Recombination and complementation studies on 16 independently isolated chloroplast mutations affecting this complex demonstrated that they represent alleles in five distinct chloroplast genes. One of these five, the ac-u-c locus, has been positioned on the physical map of the chloroplast DNA by deletion mutations. The use of cloned spinach chloroplast ATPase genes in heterologous hybridizations to Chlamydomonas chloroplast DNA has allowed us to localize three or possibly four of the ATPase genes on the physical map. The beta and probably the epsilon subunit genes of Chlamydomonas CF1 lie within the same region of chloroplast DNA as the ac-u-c locus, while the alpha and proteolipid subunit genes appear to map adjacent to one another approximately 20 kbp away. Unlike the arrangement in higher plants, these two pairs of genes are separated from each other by an inverted repeat.  相似文献   

9.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

10.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

11.
Summary There are sequences homologous to 5S ribosomal RNA in the ribosomal DNA (rDNA) repeats of the plant-parasitic nematodeMeloidogyne arenaria. This is surprising, because in all other higher eukaryotes studied to date, the genes for 5S RNA are unlinked to and distinct from a tandem rDNA repeat containing the genes for 18S, 5.8S, and 28S ribosomal RNA. Previously, only prokaryotes and certain lower eukaryotes (protozoa and fungi) had been found to have both the larger rRNAs and 5S rRNA represented within a single DNA repeat. This has raised questions on the organization of these repeats in the earliest cell (progenote), and on subsequent evolutionary relationships between pro- and eukaryotes.Evidence is presented for rearrangements and deletions withinMeloidogyne rDNA. The unusual life cycles (different levels of ploidy, reproduction by meiotic and mitotic parthenogenesis) of members of this genus might allow rapid fixation of any variants with introduced 5S RNA sequences. The 5S RNA sequences inMeloidogyne rDNA may not be expressed, but their presence raises important questions as to the evolutionary origins and stability of repeat gene families.  相似文献   

12.
Summary The restriction endonucleases SalGI and PstI have been used to construct a physical map of wheat ctDNA. The molecule was found to contain approximately 135 kbq, and in common with many other higher plant ctDNAs about 15% of the sequences are repeated in an inverted orientation. It was established by electron microscopy that, in wheat, each segment of the inverted repeat contains 21.0 kbp, and that the single copy regions separating the two repeated segments contain 12.8 kbp and 80.2 kbp. Blot hybridisation showed that one set of ribosomal genes is located in each segment of the inverted repeat region and the sizes of these genes were accurately determined by measuring the dimensions of hybrids between the chloroplast rRNAs and the identified Sal and Eco fragments on electron micrographs: the genes for the 16S and 23S rRNAs contain 1530 bp and 2850 bp respectively and are separated by a spacer region of 2350 bp. The Bgl fragment of maize ctDNA known to contain the structural gene for the large-subunit (LS) of ribulose 1,5-bisphosphate carboxylase was used as a probe to locate the LS gene in wheat ctDNA. A small (2.8 kbp) Eco fragment was found to contain most of the wheat LS gene and is derived from the larger single-copy region, 23.5 kbp away from one segment of the inverted repeat and 54.8 kbp from the other.  相似文献   

13.

Background  

Plastid-bearing cryptophytes like Cryptomonas contain four genomes in a cell, the nucleus, the nucleomorph, the plastid genome and the mitochondrial genome. Comparative phylogenetic analyses encompassing DNA sequences from three different genomes were performed on nineteen photosynthetic and four colorless Cryptomonas strains. Twenty-three rbc L genes and fourteen nuclear SSU rDNA sequences were newly sequenced to examine the impact of photosynthesis loss on codon usage in the rbc L genes, and to compare the rbc L gene phylogeny in terms of tree topology and evolutionary rates with phylogenies inferred from nuclear ribosomal DNA (concatenated SSU rDNA, ITS2 and partial LSU rDNA), and nucleomorph SSU rDNA.  相似文献   

14.
The 5S rRNA gene family organization among 87 species and varieties of Pythium was investigated to assess evolutionary stability of the two patterns detected and to determine which pattern is likely the ancestral state in the genus. Species with filamentous sporangia (Groups A-C according to the ITS phylogenetic tree for Pythium) had 5S genes linked to the rDNA repeat that were predominantly coded for on the DNA strand opposite to the one with the other rRNA genes (‘inverted’ orientation). A small group of species with contiguous sporangia (Group D) is related to Groups A-C but had unlinked 5S genes. The main group of species with spherical zoosporangia (Groups E-J) generally had unlinked 5S genes in tandem arrays. The six species in Group K, although they also have spherical sporangia, had linked genes on the same strand as the other rRNA genes ‘non-inverted’ and most of them had pairs of tandem 5S genes. The evolutionary stability of 5S sequence organization was compared with the stability of morphological characters as interpreted from a phylogeny based on ITS sequence analysis. Features of 5S sequence organization were found to be just as consistent within groups as were the morphological characters. To determine the ancestral type of 5S family organization, a survey of Phytophthora strains was conducted to supply an outgroup reference. The most parsimonious interpretation of the data in this survey yielded the tentative conclusion that the linked condition of the 5S sequences was ancestral.  相似文献   

15.
Organisation of the ribosomal RNA genes in Streptomyces coelicolor A3(2)   总被引:15,自引:0,他引:15  
Summary Using Southern hybridisation of radiolabelled purified ribosomal RNAs to genomic DNA the ribosomal RNA genes of Streptomyces coelicolor A3(2) were shown to be present in six gene sets. Each gene set contains at least one copy of the 5 S, 16 S and 23 S sequences and in at least two cases these are arranged in the order 16 S-23S-5S. Three gene sets, rrnB, rrnD and rrnF, were isolated by screening a library of S. coelicolor A3(2) DNA. The restriction map of one of these, rrnD, was determined and the nucleotide sequences corresponding to the three rRNAs were localised by Southern hybridisation. The gene order in rrnD is 16S-23S-5S.  相似文献   

16.
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Relatively few genes in the yeast Saccharornyces cerevisiae are known to contain intervening sequences. As a group, yeast ribosomal protein genes exhibit a higher prevalence of introns when compared to non-ribosomal protein genes. In an effort to quantify this bias we have estimated the prevalence of intron sequences among non-ribosomal protein genes by assessing the number of prp2-sensitive mRNAs in an in vitro translation assay. These results, combined with an updated survey of the GenBank DNA database, support an estimate of 2.5% for intron-containing non-ribosomal protein genes. Furthermore, our observations reveal an intriguing distinction between the distributions of ribosomal protein and non-ribosomal protein intron lengths, suggestive of distinct, gene class-specific evolutionary pressures.  相似文献   

18.
Summary The DNA sequences of the mercuric resistance determinants of plasmid R100 and transposon Tn501 distal to the gene (merA) coding for mercuric reductase have been determined. These 1.4 kilobase (kb) regions show 79% identity in their nucleotide sequence and in both sequences two common potential coding sequences have been identified. In R100, the end of the homologous sequence is disrupted by an 11.2 kb segment of DNA which encodes the sulfonamide and streptomycin resistance determinants of Tn21. This insert contains terminal inverted repeat sequences and is flanked by a 5 base pair (bp) direct repeat. The first of the common potential coding sequences is likely to be that of the merD gene. Induction experiments and mercury volatilization studies demonstrate an enhancing but non-essential role for these merA-distal coding sequences in mercury resistance and volatilization. The potential coding sequences have predicted codon usages similar to those found in other Tn501 and R100 mer genes.  相似文献   

19.
20.
The nucleotide sequence of the complete chloroplast genome of a basal angiosperm, Calycanthus fertilis, has been determined. The circular 153337 bp long cpDNA is colinear with those of tobacco, Arabidopsis and spinach. A total of 133 predicted genes (115 individual gene species, 18 genes duplicated in the inverted repeats) including 88 potential protein-coding genes (81 gene species), 8 ribosomal RNA genes (4 gene species) and 37 tRNA genes (30 gene species) representing 20 amino acids were identified based on similarity to their homologs from other chloroplast genomes. This is the highest gene number ever registered in an angiosperm plastome. Calycanthus fertilis cpDNA also contains a homolog of the recently discovered mitochondrial ACRS gene. Since no gene transfer from mitochondria to the chloroplast has ever been documented, we investigated the evolutionary affinity of this gene in detail. Phylogenetic analysis of the protein-coding subset of the plastome suggests that the ancient line of Laurales emerged after the split of the angiosperms into monocots and dicots. Calycanthus fertilis Walter var. ferax (Michy.) Rehder is a synonym of C. floridus L. var. glaucus (Willd.) Torr. & A. Gray.Data deposition: The sequence reported in this paper has been deposited in the EMBL database (accession no. AJ428413).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号