首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel marine bacterium, designated strain CNURIC014T was isolated from coastal seawater of Jeju Island in Korea. Strain CNURIC014T formed yellow colonies on marine agar 2216 and the cells were Gram-negative, non-motile, strictly aerobic, rod-shaped. The temperature, pH and NaCl ranges for growth were 15–37°C, pH 6.0–9.0 and 1.0–7.0% NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CNURIC014T was most closely related to Gaetbulibacter marinus and Gaetbulibacter saemankumensis, with a sequence similarity of 95.1% and 94.6%, respectively. The DNA G+C content of the strain was 33.1 mol% and the major respiratory quinone was menaquinone-6. The major cellular fatty acids were iso-C15:1 (22.8%), iso-C15:0 (18.8%), summed feature 3 (iso-C15:0 2-OH/C16:1 ω7c, 12.9%) and iso-C17:0 3-OH (11.5%). On the basis of phenotypic, phylogenetic, and genotypic data, strain CNURIC014T represents a novel species within the genus Geatbulibacter, for which the name Gaetbulibacter jejuensis sp. nov. is proposed. The type strain is CNURIC014T(=KCTC 22615T =JCM 15976T).  相似文献   

2.
A non-motile red-pigmented bacterium, designated strain HMD1002T, was isolated from an artificial lake located on the campus of Hankuk University of Foreign Studies, South Korea. The major fatty acids were iso-C15:0 (29.6%), Summed Feature 3 (comprising C16:1 ω7c and/or iso-C15:0 2-OH; 17.5%) and iso-C17:0 3-OH (12.5%). The major isoprenoid quinone was menaquinone-7 (MK-7). The DNA G+C content was 41.0 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD1002T formed a lineage in the genus Pedobacer and was closely related to Pedobacer terrae (96.3%) and Pedobacer suwonensis (95.8%) in sequence similarity. On the basis of the evidence presented in this study, strain HMD1002T represents a novel species of the genus Pedobacter, for which the name Pedobacter yonginense sp.nov. is proposed. The type strain is HMD1002T (=KCTC 22721T = CECT 7544T).  相似文献   

3.
A bacterial strain designated antisso-27T, previously isolated from saltpan in Taiwan while screening for bacteria for algicidal activity, was characterized using the polyphasic taxonomic approach. Strain antisso-27T was Gram-negative, aerobic, brownish yellow colored, rod-shaped, non-flagellated and non-gliding. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain antisso-27T belonged to the genus Aquimarina within the family Flavobacteriaceae with relatively low sequence similarities of 94.0–96.6% to other valid Aquimarina spp. It contained iso-C17:0 3-OH, iso-C15:0, iso-C16:0, iso-C15:1 and iso-C15:0 3-OH as the main fatty acids and contained a menaquinone with six isoprene units (MK-6) as the major isoprenoid quinone. Major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, an uncharacterized aminolipid and five uncharacterized phospholipids. Strain antisso-27T employed direct mode of algicidal lysis to Chlorella vulgaris strain 211-31; nevertheless, it released an algicidal substance against M. aeruginosa strain MTY01. This is the first study that the Aquimarina species possesses both direct and indirect algicidal activities. On the basis of the phylogenetic and phenotypic data, strain antisso-27T should be classified as representing a novel species, for which the name A. salinaria sp. nov. is proposed. The type strain is A. salinaria antisso-27T (= BCRC 80080T = LMG 25375T).  相似文献   

4.
A Gram-staining-negative, motile, non-spore-forming and rod-shaped bacterial strain, 20-23RT, was isolated from intestine of bensasi goatfish, Upeneus bensasi, and its taxonomic position was investigated by using a polyphasic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 20-23RT belonged to the genus Shewanella. Strain 20-23RT exhibited 16S rRNA gene sequence similarity values of 99.5, 99.2, and 97.5% to Shewanella algae ATCC 51192T, Shewanella haliotis DW01T, and Shewanella chilikensis JC5T, respectively. Strain 20-23RT exhibited 93.1–96.0% 16S rRNA gene sequence similarity to the other Shewanella species. It also exhibited 98.3–98.4% gyrB sequence similarity to the type strains of S. algae and S. haliotis. Strain 20-23RT contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-8 and Q-7. The fatty acid profiles of strain 20–23RT, S. algae KCTC 22552T and S. haliotis KCTC 12896T were similar; major components were iso-C15:0, C16:0, C16:1 ω7c and/or iso-C15:0 2-OH and C17:1 ω8c. The DNA G+C content of strain 20-23RT was 53.9 mol%. Differential phenotypic properties and genetic distinctiveness of strain 20–23RT, together with the phylogenetic distinctiveness, revealed that this strain is distinguishable from recognized Shewanella species. On the basis of the data presented, strain 20-23RT represents a novel species of the genus Shewanella, for which the name Shewanella upenei sp. nov. is proposed. The type strain is 20–23RT (=KCTC 22806T =CCUG 58400T).  相似文献   

5.
A marine bacterium, designated IMCC3175T, was isolated from a seawater sample collected off the Antarctic coast. The strain was Gram-negative, obligately aerobic, carotenoid pigment-containing, and rod-shaped bacterium that divided by binary fission. As determined by 16S rRNA gene sequence comparisons, the most closely related genera were Formosa (92.9∼93.3%), Bizionia (91.6∼93.2%), Gaetbulibacter (91.5∼92.8%), Sediminibacter (92.7%), Yeosuana (92.6%), Subsaximicrobium (92.1∼92.2%), and Gillisia (89.5∼92.2%). Phylogenese analysis based on 16S rRNA gene sequences showed that the strain formed a monophyletic clade together with the genera Sediminibacter and Subsaximicrobium but represented an independent phyletic line in this clade of the family Flavobacteriaceae. The DNA G+C content of the strain was 37.3 mol%. The major respiratory quinone was MK-6 and the predominant cellular fatty acids were C16:1 ω7c and/or iso-C15:0 2-OH (12.8%), anteiso-C15:0 (9.4%), and iso-C16:1 (9.4%). Low 16S rRNA gene sequence similarity, formation of a distinct phylogenetic branch, and several phenotypic characteristics, including a narrow range of temperature and salinity for growth, differentiated strain IMCC3175T from other related genera in the family Flavobacteriaceae. Therefore the name Antarcticimonas flava gen. nov., sp. nov. is proposed, with strain IMCC3175T (=KCCM 42713T =NBRC 103398T) as the type strain.  相似文献   

6.
A bacterial strain, designated KMM 6244T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile and spore-forming. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bacillus. The nearest neighbor of strain KMM 6244T was Bacillus decolorationis LMG 19507T with a 16S rRNA gene sequence similarity of 98.0%. Sequence similarities with the other recognized Bacillus species were less than 96.0%. The results of the DNA–DNA hybridization experiments revealed a low relatedness (37%) of the novel isolate with the type strain of B. decolorationis LMG 19507T. Strain KMM 6244T grew at 4–45°C and with 0–12% NaCl. It produced catalase and oxidase and hydrolyzed aesculin, casein, gelatin and DNA. The predominant fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and iso-C14:0. The DNA G + C content was 39.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6244T represents a novel species in the genus Bacillus, for which the name Bacillus berkeleyi sp. nov. is proposed. The type strain is KMM 6244T (KCTC 12718T = LMG 26357T).  相似文献   

7.
Strain M1-2T was isolated from the black sand from the seashore of Jeju Island, Republic of Korea and was classified using a polyphasic taxonomic approach. Strain M1-2T appeared as Gram-negative, motile rods that could grow in the presence of 1–10% (w/v) NaCl and at temperatures ranging from 4 to 37°C. This isolate has catalase and oxidase activity and hydrolyses aesculin, DNA and l-tyrosine. Based on phylogenetic analysis using 16S rRNA gene sequences, strain M1-2T belongs to the genus Joostella and is clearly distinct from the other described species of this genus, Joostella marina (type strain En5T). The 16S rRNA gene sequence similarity level between M1-2T and J. marina En5T is 97.2%, and the DNA–DNA relatedness value between the two strains is 23.9%. Strain M1-2T contains MK-6 as the major menaquinone and iso-C15:0, summed feature 3 (C16:1 ω7c and/or iso-C15:0 2OH) and iso-C17:0 3OH as major cellular fatty acids. The DNA G + C content is 32.3 mol%. These data suggest that strain M1-2T should be classified as a novel species, for which the name Joostella atrarenae sp. nov. is proposed. The type strain for the novel species is M1-2T (= KCTC 23194T = NCAIM B.002413T).  相似文献   

8.
A bacterial strain, designated Iso4T, was isolated from the East Sea of Korea and was subjected to a poly-phasic taxonomy study including phenotypic and chemotaxonomic characteristics as well as 16S rRNA gene sequence analysis. Cells of the strain were Gram-negative, motile, non-budding, non-stalked, and strictly aerobic. Strain Iso4T grew optimally at 20°C in the presence of 1∼2% (w/v) NaCl and at pH 6.9∼7.6. The major respiratory quinone was Q-10 and the major cellular fatty acids were C18:1 ω7c (53.5%), C17:1 ω5c (11.7%), C17:1 ω6c (8.1%), C16:0 (7.8%), C17:0 (4.8%), C15:0 (2.9%), and C16:1 ω5c (2.2%). The DNA G+C content of strain Iso4T was 56.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Iso4T formed a monophyletic clade in the family Hyphomonadaceae, supported by high bootstrap value and was most closely related to the genus Hyphomonas (92∼94%), a member of marine bacteria in the family. The phenotypic, genotypic, and chemotaxonomic evidences also suggest strain Iso4T represents a novel genus and species in the family Hyphomonadaceae, for which the name Henriciella gen. nov., sp. nov. is proposed. The type strain is Iso4T (=KCTC 12513T =DSM 19595T =JCM 15116T).  相似文献   

9.
Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (<?97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA–DNA relatedness with F. pedocola UCM-R36T (43.23?±?4.1%) and F. humicola UCM-46T (29.17?±?3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA–DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T?=?KCTC 62315 T?=?CCTCC AB 2017243T) is proposed.  相似文献   

10.
A novel bacterium B9T was isolated from tidal flat sediment. Its morphology, physiology, biochemical features, and 16S rRNA gene sequence were characterized. Colonies of this strain are yellow and the cells are Gram-negative, rod-shaped, and do not require NaCl for growth. The 16S rRNA gene sequence similarity indicated that strain B9T is associated with the genus Lysobacter (≤ 97.2%), Xanthomonas (≤ 96.8%), Pseudomonas (≤ 96.7%), and Luteimonas (≤ 96.0%). However, within the phylogenetic tree, this novel strain shares a branching point with the species Luteimonas composti CC-YY255T (96.0%). The DNA-DNA hybridization experiments showed a DNA-DNA homology of 23.0% between strain B9T and Luteimonas mephitis B1953/27.1T. The G+C content of genomic DNA of the type strain is 64.7 mol% (SD, 1.1). The predominant fatty acids are iso-C11:0, iso-C15:0, iso-C16:0, iso-C17:0, iso-C17:0 ω9c, and iso-C11:0 3-OH. Combined analysis of the 16S rRNA gene sequences, fatty acid profile, and results from physiological and biochemical tests indicated that there is genotypic and phenotypic differentiation of the isolate from other Luteimonas species. For these reasons, strain B9T was proposed as a novel species, named Luteimonas aestuarii. The type strain of the new species is B9T (= KCTC 22048T, DSM 19680T).  相似文献   

11.
The Gram-negative, strictly aerobic, non-motile, non-spore-forming, rod shaped bacterial strain designated TR6-03T was isolated from compost, and its taxonomic position was investigated by using a polyphasic approach. Strain TR6-03T grew at 4–42°C and at pH 6.0–8.0 on R2A and nutrient agar without NaCl supplement. Strain TR6-03T had β-glucosidase activity, which was responsible for its ability to transform ginsenoside Re (one of the dominant active components of ginseng) to Rg2. On the basis of 16S rRNA gene sequence similarity, strain TR6-03T was shown to belong to the family Sphingobacteriaceae and to be related to Mucilaginibacter lappiensis ANJLI2T (96.3% sequence similarity), M. dorajii FR-f4T (96.1%), and M. rigui WPCB133T (94.1%). The G+C content of the genomic DNA was 45.6%. The predominant respiratory quinone was MK-7 and the major fatty acids were summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 20H), iso-C16:0 and iso-C17:0 3OH. DNA and chemotaxonomic data supported the affiliation of strain TR6-03T to the genus Mucilaginibacter. Strain TR6-03T could be differentiated genotypically and phenotypically from the recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter composti sp. nov. is proposed, with the type strain TR6-03T (=KACC 14956T = KCTC 12642T =LMG 23497T).  相似文献   

12.
A Gram-negative, aerobic, rod shaped, non-spore-forming bacterial strain, designated Dae08T, was isolated from sediment of the stream near Daechung dam in South Korea, and was characterized in order to determine its taxonomic position, using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain Dae08T belongs to the family Xanthomonadaceae of the Gammaproteobacteria, and is related to Lysobacter brunescens ATCC 29482T (97.3%). The phylogenetic distances from any other species with validly published names within the genus Lysobacter were greater than 3.7%. The G+C contents of the genomic DNA of strain Dae08T was 69.3 mol%. The detection of a quinone system with Q-8 as the predominant compound and a fatty acid profile with iso-C15:0, iso-C17:1, ω9c, iso-C17:0, iso-C16:0, and iso-C11:0 3-OH as the major acids supported the affiliation of strain Dae08T to the genus Lysobacter. DNA-DNA relatedness between strain Dae08T and its phylogenetically closest neighbour was 28%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Dae08T (= KCTC 12600T) should be classified in the genus Lysobacter as the novel species, for which the name Lysobacter daecheongensis sp. nov. is proposed.  相似文献   

13.
A novel bacterial strain, designated T-Y1T, capable of degrading a variety of polysaccharides was isolated from seawater of an oyster farm in the South Sea, Korea. It was found to be aerobic, Gram-negative, non-flagellated, non-gliding and rod-shaped. Strain T-Y1T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain T-Y1T belonged to the genus Winogradskyella. Strain T-Y1T exhibited 16S rRNA gene sequence similarity values of 95.0–96.8 % to the type strains of recognized Winogradskyella species and less than 94.5 % to other validly named species. The chemotaxonomic data concurred with the phylogenetic inference. Strain T-Y1T contained MK-6 as the predominant menaquinone and anteiso-C15:0, iso-C15:0, iso-C15:1 G and iso-C16:0 3-OH as the major fatty acids. The major polar lipids of strain T-Y1T were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 36.2 mol%. Differential phenotypic properties, together with its phylogenetic distinctiveness, enabled strain T-Y1T to be differentiated from the recognized Winogradskyella species. On the basis of the data presented here, strain T-Y1T is considered to represent a novel species of the genus Winogradskyella, for which the name Winogradskyella multivorans sp. nov. is proposed. The type strain is T-Y1T (=KCTC 23891T = CCUG 62216T).  相似文献   

14.
Strain AK12T, an orange pigmented Gram-negative, rod shaped, non-motile bacterium, was isolated from a mud sample collected from a brackish water pond at Rampur of West Bengal, India. The strain was positive for oxidase, catalase and phosphatase. The predominant fatty acids were iso-C15:0 (42.7%), iso-C17:0 3OH (13.2%), C16:1ω7c/C16:1ω6c (summed feature 3) (8.0%), iso-C17:1 I/anteiso-C17:1 B (summed feature 4) (6.1%) and iso-C17:1ω9c/C16:0 10-methyl (summed feature 9) (9.4%). Strain AK12T contained MK-7 as the major respiratory quinone and phosphatidylethanolamine, one unidentified aminophospholipid and six unidentified lipids as the polar lipids. The G + C content of DNA of the strain AK12T was 46.2 mol%. The 16S rRNA gene sequence analysis indicated that strain AK12T was member of the genus Echinicola and closely related to Echinicola vietnamensis, Echinicola pacifica and Echinicola jeungdonensis with pair-wise sequence similarity of 96.8, 96.3 and 96.0% respectively. Phylogenetic analyses indicated that the strain AK12T clustered with E. vietnamensis and together with E. pacifica and E. jeungdonensis with a phylogenetic distance of 5.1, 6.3 and 6.6% (94.9, 93.7 and 93.4% similarity) respectively. Based on data from the current polyphasic study, strain AK12T is proposed as a novel species of the genus Echinicola, for which the name Echinicola shivajiensis sp. nov. is proposed. The type strain of E. shivajiensis is AK12T (= MTCC 11083T = JCM 17847T).  相似文献   

15.
A taxonomic study was carried out on Gsoil 142T, a bacterial strain isolated from the soil collected in a ginseng field in Pocheon province, South Korea. Comparative 16S rRNA gene sequence studies showed a clear affiliation of this bacterium to the Gammaproteobacteria, and it was most closely related to Hydrocarboniphaga effusa ATCC BAA 332T (94.4%, 16S rRNA gene sequence similarity), Nevskia ramosa DSM 11499T (94.1%) and Alkanibacter difficilis MN154.3T (92.0%). Strain Gsoil 142T was a Gram-negative, strictly aerobic, motile, and rod-shaped bacterium. The G+C content of the genomic DNA was 69.9% and predominant ubiquinone was Q-8. Major fatty acids were summed feature 8 (C18:1 ω7c and/or ω6c, 36.3%), summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 20.6%) and C16:0 (17.4%). The major polar lipids detected in strain Gsoil 142T were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unknown glycolipid. On the basis of polyphasic evidence, it is proposed that strain Gsoil 142T should be placed in a novel genus and species, for which the name Panacagrimonas perspica gen. nov., sp. nov. is proposed. The type strain is Gsoil 142T (= KCTC 12982T = LMG 23239T).  相似文献   

16.
A marine bacterium designated strain IMCC4074T was isolated from surface seawater collected off Incheon Port, the Yellow Sea, and subjected to a polyphasic taxonomy. The strain was Gram-negative, chemoheterotrophic, slightly halophilic, strictly aerobic, and motile rods. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Marinobacterium litorale KCTC 12756T (93.9%) and shared low 16S rRNA gene sequence similarities with members of the genus Marinobacterium (91.8–93.9%) and the genus Neptunomonas (93.4%) in the order Oceanospirillales. Phylogenetic analyses showed that this marine isolate formed an independent phyletic line within the genus Marinobacterium clade. The DNA G+C composition of the strain was 56.0 mol% and the predominant constituents of the cellular fatty acids were C16:0 (28.0%), C16:1 ω7c and/or iso-C15:0 2-OH (19.3%), C18:1 ω7c (17.8%), and C17:1 cyclo (12.5%), which differentiated the strain from other Marinobacterium species. Based on the taxonomic data collected in this study, only a distant relationship could be found between strain IMCC4074T and other members of the genus Marinobacterium, thus the strain represents a novel species of the genus Marinobacterium, for which the name Marinobacterium marisflavi sp. nov. is proposed. The type strain of Marinobacterium marisflavi is IMCC4074T (= KCTC 12757T = LMG 23873T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain IMCC4074T is EF468717. An erratum to this article can be found at  相似文献   

17.
A novel bacterium designated S-42T was isolated from stream bank soil. Cells were found to be aerobic, Gram staining-negative, oxidase-positive, catalase-negative, non-motile, non-spore-forming, rod-shaped, and yellow-pigmented. The strain can grow at 15–35 °C, pH 6.0–10.0, and at 0.5% (w/v) NaCl concentration. Urea was hydrolysed. Flexirubin-type pigments were absent. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain S-42T formed a lineage within the family Flavobacteriaceae of the phylum Bacteroidetes that is distinct from various species of the genus Flavobacterium, including Flavobacterium maotaiense T9T (97.6% sequence similarity), Flavobacterium hibernum ATCC 51468T (97.4%), and Flavobacterium granuli Kw05T (97.1%). The 16S rRNA gene sequences identity between strain S-42T and other members of the genus Flavobacterium were < 97.0%. Strain S-42T contains MK-6 as sole respiratory quinone. The major polar lipids were identified as phosphatidylethanolamine and an unidentified aminolipid. The major cellular fatty acids were identified as iso-C15:0, summed feature 3 (C16:1ω7c and/or C16: 1ω6c), C16:0, anteiso-C15:0, iso-C17:0 3-OH, iso-C15:0 3-OH, and iso-C15:1 G. The DNA G?+?C content of the strain was 35.8 mol%. The polyphasic characterization indicated that strain S-42T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ureilyticum sp. nov. is proposed. The type strain is S-42T (=?KEMB 9005-537T?=?KACC 19115T?=?NBRC 112683T).  相似文献   

18.
A strictly aerobic, red-pigmented, non-motile, catalase- and oxidase-positive, Gram-staining-negative bacterium, designated strain CNURIC011T, was isolated from seawater off the coast of Jeju Island in Korea. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain CNURIC011T belongs to the genus Aquimarina in the family Flavobacteriaceae. 16S rRNA gene sequence analysis revealed that the close relatives of the novel strain are Aquimarina latercula ATCC 23177T, Aquimarina marcrocephali JAMB N27T, Aquimarina intermedia KMM 6258T, Aquimarina muelleri KMM 6020T, and Aquimarina brevivitae SMK-19T, with sequence similarities of 97.6, 96.6, 96.0, 95.6, and 94.2%, respectively. DNA-DNA hybridization revealed that the level of relatedness between strain CNURIC011T and Aquimarina latercula ATCC 23177T (=KCTC 2912T) was 4.9%. The DNA G+C content was 35.8 mol% and the major respiratory quinone was MK-6. The major fatty acids were iso-C15:0 (14.9%), C15:0 (13.9%), iso-C17:0 3-OH (12.6%), iso-C15:1 G (7.3%), and iso-C17:1 ω9c (7.2%). On the basis of phenotypic, phylogenetic, and genotypic data, strain CNURIC011T represents a novel species within the genus Aquimarina, for which the name Aquimarina litoralis sp. nov. is proposed. The type strain is CNURIC011T (=KCTC 22614T =JCM 15974T).  相似文献   

19.
A Gram-negative, non-motile, non-endospore-forming bacterial strain, designated DPSR-4T, was isolated from a tidal flat sediment on the southern coast of Korea. Strain DPSR-4T grew optimally at 25–30°C, at pH 7.0–7.5 and in the presence of 2% (w/v) NaCl. A Neighbour-Joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain DPSR-4T clustered with Salinimonas chungwhensis BH030046T by a high bootstrap resampling value of 99.7%. Strain DPSR-4T exhibited 96.2% 16S rRNA gene sequence similarity to that of S. chungwhensis BH030046T and 93.7–96.6% sequence similarity to the sequences of type strains of Alteromonas species. Strain DPSR-4T contained Q-8 as the predominant ubiquinone and iso-C15:0 2-OH and/or C16:1 ω7c, C16:0 and C18:1 ω7c as the major fatty acids. The major polar lipids detected in strain DPSR-4T and S. chungwhensis KCTC 12239T were phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content was 53.4 mol%. Differential phenotypic properties and phylogenetic distinctiveness of strain DPSR-4T demonstrated that this strain is distinguishable from the sole recognized species of the genus Salinimonas, S. chungwhensis. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain DPSR-4T is considered to represent a novel species of the genus Salinimonas, for which the name Salinimonas lutimaris sp. nov. is proposed. The type strain is DPSR-4T (KCTC 23464T, CCUG 60743T).  相似文献   

20.
Taxonomic studies were performed on three strains isolated from Cheonho reservoir in Cheonan, Korea. The isolates were Gram-negative, aerobic, rod-shaped, non-motile, catalase-positive, and oxidase-positive. Colonies on solid media were cream-yellow, smooth, shiny, and circular. Phylogenetic analysis of the 16S rRNA gene sequences revealed that these strains belong to the genus Flavobacterium. The strains shared 98.6–99.4% sequence similarity with each other and showed less than 97% similarity with members of the genus Flavobacterium with validly published names. The DNA-DNA hybridization results confirmed the separate genomic status of strains ARSA-42T, ARSA-103T, and ARSA-108T. The isolates contained menaqui-none-6 as the predominant menaquinone and iso-C15:0, iso-C15:0 3-OH, iso-Ci15:1 G, and iso-C16:0 3-OH as the major fatty acids. The genomic DNA G+C content of the isolates were 31.4–33.2 mol%. According to the phenotypic and genotypic data, these organisms are classified as representative of three novel species in the genus Flavobacterium, and the name Flavobacterium koreense sp. nov. (strain ARSA-42T =KCTC 23182T =JCM 17066T =KACC 14969T), Flavobacterium chungnamense sp. nov. (strain ARSA-103T =KCTC 23183T =JCM 17068T =KACC 14971T), and Flavobacterium cheonanense sp. nov. (strain ARSA-108T =KCTC 23184T =JCM 17069T =KACC 14972) are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号