首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand-induced dimer formation of calmodulin   总被引:1,自引:0,他引:1  
Calmodulin (CaM) can bind to numerous proteins in several interaction modes. Recently a new mode of interaction was discovered, in which two CaM molecules form an X-shaped dimer and two binding sites to trap the CaM-binding domain (CBD) of calcineurin subunit A. However, the X-shaped CaM dimer alone without ligand has not been observed. We performed molecular dynamics (MD) simulations and used MM_PBSA approach to investigate the properties of this new binding mode using ligand-bound and -free dimer systems. MD trajectories show that two peptides of CBD play a critical role in stabilizing the X-shaped conformation of the CaM dimer which would otherwise be unstable, leading to dimer disassembly in the absence of the ligands. Furthermore, we have analyzed the interaction free energy of the complex by MM-PBSA method and provide further evidence to demonstrate that the CBD peptide ligands are responsible for the stabilization of the dimer. Comparing this new binding mode with the classical one represented by CaM in complex with smooth muscle myosin light chain kinase, we conclude that this new binding mode is induced by the CBD of calcineurin subunit A. Our results explain the fact that the X-shaped CaM dimer structure has never been observed in the absence of ligands.  相似文献   

2.
The Gbeta and Ggamma subunit of the heterotrimeric G proteins form a functional dimer that is stable once assembled in vivo or in vitro. The requirements, mechanism, and specificity of dimer formation are still incompletely understood, but represent important biochemical processes involved in the specificity of cellular signaling through G proteins. Here, seven Gbeta and 12 FLAG-epitope-tagged Ggamma subunits were separately synthesized in vitro using a rabbit reticulocyte lysate expression system. The translation products were combined and dimers isolated by immunoprecipitation. Gbeta1 and Gbeta4 formed dimers with all Ggamma subunit isoforms, generally with Gbeta/Ggamma stoichiometries between 0.2:1 and 0.5:1. Gbeta5, Gbeta5L, and Gbeta3s did not form significant amounts of dimer with any of the gamma subunit isoforms. Gbeta2 and Gbeta3 formed dimers with selected Ggamma isoforms to levels intermediate between that of Gbeta1/Gbeta4 and Gbeta3s/Gbeta5/Gbeta5L. We also expressed selected Gbetagamma in HEK293 cells and measured PLCbeta2 activity. Gbetagamma dimer-dependent increases in IP3 production were seen with most Gbeta1, Gbeta2, and Gbeta5 combinations, indicating functional dimer expression in intact cells. These results define the complete set of G protein betagamma dimers that are formed using a single biochemical assay method and suggest that there are Gbeta isoform-specific factors in rabbit reticulocyte lysates that determine the efficacy of Gbetagamma dimer formation.  相似文献   

3.
4.
5.
We have determined the interactive sites required for dimer formation in type VI collagen. Despite the fact that type VI collagen is a heterotrimer composed of alpha1(VI), alpha2(VI), and alpha3(VI) chains, the formation of dimers is determined principally by interactions of the alpha2(VI) chain. Key components of this interaction are the metal ion-dependent adhesion site (MIDAS) motif of the alpha2C2 A-domain and the GER sequence in the helical domain of another alpha2(VI) chain. Replacement of the alpha2(VI) C2 domain with the alpha3(VI) domain abolished dimer formation, whereas alterations in the alpha2(VI) C1 domain did not disrupt dimer formation. When the helical sequences were investigated, replacement of the alpha2(VI) sequence GSPGERGDQ with the alpha3(VI) sequence GEKGERGDV abolished dimer formation. Mutating the Pro-108 to a Lys-108 in this alpha2(VI) sequence did not influence dimer formation and suggests that, unlike the integrin I-domain/triple-helix interaction, hydroxyproline is not required in collagen VI A-domain/helix interaction. These results demonstrate that the alpha2(VI) chain position in the assembled triple-helical molecule is critical for antiparallel dimer formation and identify the interacting collagenous and MIDAS sequences involved. These interactions underpin the subsequent assembly of type VI collagen.  相似文献   

6.
PsbM and PsbI are two low molecular weight subunits of photosystem II (PSII), with PsbM being located in the center, and PsbI in the periphery, of the PSII dimer. In order to study the functions of these two subunits from a structural point of view, we crystallized and analyzed the crystal structure of PSII dimers from two mutants lacking either PsbM or PsbI. Our results confirmed the location of these two subunits in the current crystal structure, as well as their absence in the respective mutants. The relative contents of PSII dimers were found to be decreased in both mutants, with a concomitant increase in the amount of PSII monomers, suggesting a destabilization of PSII dimers in both of the mutants. On the other hand, the accumulation level of the overall PSII complexes in the two mutants was similar to that in the wild-type strain. Treatment of purified PSII dimers with lauryldimethylamine N-oxide at an elevated temperature preferentially disintegrated the dimers from the PsbM deletion mutant into monomers and CP43-less monomers, whereas no significant degradation of the dimers was observed from the PsbI deletion mutant. These results indicate that although both PsbM and PsbI are required for the efficient formation and stability of PSII dimers in vivo, they have different roles, namely, PsbM is required directly for the formation of dimers and its absence led to the instability of the dimers accumulated. On the other hand, PsbI is required in the assembly process of PSII dimers in vivo; once the dimers are formed, PsbI was no longer required for its stability.  相似文献   

7.
Recent experiments with amyloid beta (Abeta) peptide indicate that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation. 1), We use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations; and 2), we employ all-atom molecular mechanics simulations to estimate thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts 10 different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40) dimers. We find that 1), dimer conformations have higher free energies compared to their corresponding monomeric states; and 2), the free-energy difference between the Abeta(1-42) and the corresponding Abeta(1-40) dimer conformation is not significant. Our results suggest that Abeta oligomerization is not accompanied by the formation of thermodynamically stable planar beta-strand dimers.  相似文献   

8.
DPP-IV is a prolyl dipeptidase, cleaving the peptide bond after the penultimate proline residue. It is an important drug target for the treatment of type II diabetes. DPP-IV is active as a dimer, and monomeric DPP-IV has been speculated to be inactive. In this study, we have identified the C-terminal loop of DPP-IV, highly conserved among prolyl dipeptidases, as essential for dimer formation and optimal catalysis. The conserved residue His750 on the loop contributes significantly for dimer stability. We have determined the quaternary structures of the wild type, H750A, and H750E mutant enzymes by several independent methods including chemical cross-linking, gel electrophoresis, size exclusion chromatography, and analytical ultracentrifugation. Wild-type DPP-IV exists as dimers both in the intact cell and in vitro after purification from human semen or insect cells. The H750A mutation results in a mixture of DPP-IV dimer and monomer. H750A dimer has the same kinetic constants as those of the wild type, whereas the H750A monomer has a 60-fold decrease in kcat. Replacement of His750 with a negatively charged Glu (H750E) results in nearly exclusive monomers with a 300-fold decrease in catalytic activity. Interestingly, there is no dynamic equilibrium between the dimer and the monomer for all forms of DPP-IVs studied here. This is the first study of the function of the C-terminal loop as well as monomeric mutant DPP-IVs with respect to their enzymatic activities. The study has important implications for the discovery of drugs targeted to the dimer interface.  相似文献   

9.
The preparation of liposomes from synthetic dialkyl amphiphiles is described. Two of these lipids were synthesised with mixed chains of 18:0,14:0 and 18:0,22:0 and one contained two identical alkyl chains of 18:0,18:0. Based on electron microscopic observations and encapsulation studies, liposomes formed from these lipids resemble those prepared from natural lipids. The polyhydroxyl head group of these lipids was designed to mimic the oligosaccharide rich surface of natural cells. SPLVs of all lipid compositions investigated, had higher encapsulation efficiency compared with that of MLVs. With SPLVs the encapsulation efficiency obtained with EPC liposomes were similar to those with novel lipids. However, the optimum was obtained with 4a:cholesterol. Encapsulation efficiency in both MLVs and SPLVs was higher with novel lipid containing different side chain length.  相似文献   

10.
The role of lipids in photosystem II   总被引:1,自引:0,他引:1  
The thylakoid membranes of photosynthetic organisms, which are the sites of oxygenic photosynthesis, are composed of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol (PG). The identification of many genes involved in the biosynthesis of each lipid class over the past decade has allowed the generation and isolation of mutants of various photosynthetic organisms incapable of synthesizing specific lipids. Numerous studies using such mutants have revealed that deficiency of these lipids primarily affects the structure and function of photosystem II (PSII) but not of photosystem I (PSI). Recent X-ray crystallographic analyses of PSII and PSI complexes from Thermosynechococcus elongatus revealed the presence of 25 and 4 lipid molecules per PSII and PSI monomer, respectively, indicating the enrichment of lipids in PSII. Therefore, lipid molecules bound to PSII may play special roles in the assembly and functional regulation of the PSII complex. This review summarizes our present understanding of the biochemical and physiological roles of lipids in photosynthesis, with a special focus on PSII. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

11.
The post‐translational modification of proteins with ubiquitin can take on many forms, including the decoration of substrates with polymeric ubiquitin chains. These chains are linked through one of the seven lysine residues in ubiquitin, with the potential to form a panoply of linkage combinations as the chain length increases. The ensuing structural diversity of modifications serves a variety of signaling functions. Still, some linkages are present at a much higher level than others in cellulo. Although ubiquitination is an enzyme‐catalyzed process, the large disparity of abundancies led us to the hypothesis that some linkages might be intrinsically faster to form than others, perhaps directing the course of enzyme evolution. Herein, we assess the kinetics of ubiquitin dimer formation in an enzyme‐free system by measuring the rate constants for thiol–disulfide interchange between appropriate ubiquitin variants. Remarkably, we find that the kinetically expedient linkages correlate with those that are most abundant in cellulo. As the abundant linkages also appear to function more broadly in cellulo, this correlation suggests that the more accessible chains were selected for global roles.  相似文献   

12.
13.
14.
We have assessed the effects of DNA curvature on pyrimidine dimer (PD) formation by examining the pattern of PD formation in DNA held in a loop by lambda repressor. The loop region was composed of diverse DNA sequences such that potential PD sites occurred throughout the loop. PD formation in the loop occurred with peaks at approximately 10 base intervals, just 3' of where the bending of the DNA was inferred to be toward the major groove. This relationship between the peaks and the DNA curvature is essentially identical to that observed in the nucleosome. This indicates that DNA curvature is the major source of the periodicity of PD formation in the nucleosome, and supports an earlier model of the conformation of nucleosomal DNA based on PD formation. DNA loops containing diverse sequences should be of general value for assessing the effects of DNA curvature on DNA modification by other agents used to probe DNA-protein interactions and DNA conformation.  相似文献   

15.
AIMS: Inactivation of Escherichia coli as a function of ultraviolet (UV) wavelength was investigated by using the endonuclease-sensitive site (ESS) assay to quantify pyrimidine dimer formation. METHODS AND RESULTS: Ultraviolet dose-response curves were determined based on both log reduction in colony-forming units (CFU) and endonuclease-sensitive sites per kb DNA (ESS/kb) for monochromatic 254-nm low-pressure (LP) UV, polychromatic medium-pressure (MP) UV, 228 and 289-nm UV irradiation. UV irradiation from LP and MP UV sources were approx. equal in both CFU reduction and pyrimidine dimer formation at all UV doses studied; 228-nm irradiation was less effective than LP or MP, and 289-nm irradiation was the least effective in both CFU reduction and pyrimidine dimer formation. These results are in qualitative agreement with the absorption spectrum of pyrimidine bases in DNA. Results indicated an approx. linear relationship between ESS/kb and log CFU reduction. CONCLUSIONS: Formation of pyrimidine dimers in genomic DNA is primarily responsible for UV inactivation of E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributed to fundamental understanding of UV disinfection and aids in UV reactor design.  相似文献   

16.
17.
Ceramide is a lipid moiety synthesized via the enzymatic activity of ceramide synthases (CerSs), six of which have been identified in mammalian cells, and each of which uses a unique subset of acyl-CoAs for ceramide synthesis. The CerSs are part of a larger gene family, the Tram-Lag-CLN8 domain family. Here, we identify a unique, C-terminal motif, the DxRSDxE motif, which is only found in CerSs and not in other Tram-Lag-CLN8 family members. Deletion of this motif in either CerS2 or in CerS6 did not affect the ability of either enzyme to generate ceramide using both an in vitro assay and metabolic labeling, but deletion of this motif did affect the activity of CerS2 when coexpressed with CerS6. Surprisingly, transfection of cells with either CerS2 or CerS6 lacking the motif did not result in changes in cellular ceramide levels. We found that CerS2 and CerS6 interact with each other, as shown by immunoprecipitation, but deletion of the DxRSDxE motif impeded this interaction. Moreover, proteomics analysis of cells transfected with CerS6Δ338–344 indicated that deletion of the C-terminal motif impacted cellular protein expression, and in particular, the levels of ORMDL1, a negative regulator of sphingolipid synthesis. We suggest that this novel C-terminal motif regulates CerS dimer formation and thereby impacts ceramide synthesis.  相似文献   

18.
19.
Cyclopropane ring formation in membrane lipids of bacteria.   总被引:15,自引:0,他引:15       下载免费PDF全文
It has been known for several decades that cyclopropane fatty acids (CFAs) occur in the phospholipids of many species of bacteria. CFAs are formed by the addition of a methylene group, derived from the methyl group of S-adenosylmethionine, across the carbon-carbon double bond of unsaturated fatty acids (UFAs). The C1 transfer does not involve free fatty acids or intermediates of phospholipid biosynthesis but, rather, mature phospholipid molecules already incorporated into membrane bilayers. Furthermore, CFAs are typically produced at the onset of the stationary phase in bacterial cultures. CFA formation can thus be considered a conditional, postsynthetic modification of bacterial membrane lipid bilayers. This modification is noteworthy in several respects. It is catalyzed by a soluble enzyme, although one of the substrates, the UFA double bond, is normally sequestered deep within the hydrophobic interior of the phospholipid bilayer. The enzyme, CFA synthase, discriminates between phospholipid vesicles containing only saturated fatty acids and those containing UFAs; it exhibits no affinity for vesicles of the former composition. These and other properties imply that topologically novel protein-lipid interactions occur in the biosynthesis of CFAs. The timing and extent of the UFA-to-CFA conversion in batch cultures and the widespread distribution of CFA synthesis among bacteria would seem to suggest an important physiological role for this phenomenon, yet its rationale remains unclear despite experimental tests of a variety of hypotheses. Manipulation of the CFA synthase of Escherichia coli by genetic methods has nevertheless provided valuable insight into the physiology of CFA formation. It has identified the CFA synthase gene as one of several rpoS-regulated genes of E. coli and has provided for the construction of strains in which proposed cellular functions of CFAs can be properly evaluated. Cloning and manipulation of the CFA synthase structural gene have also enabled this novel but extremely unstable enzyme to be purified and analyzed in molecular terms and have led to the identification of mechanistically related enzymes in clinically important bacterial pathogens.  相似文献   

20.
Cryomicroscopic analysis demonstrated that two lipid preparations from marine vertebrates (<0.1%) and liposomes prepared from rainbow trout sperm lipids (<0.5%) efficiently hindered the growth of ice crystals during freezing of multicomponent cryoprotective media used for trout sperm cryopreservation. At higher lipid concentrations, crystals either did not form at all or had altered shape and blurred boundaries. Addition of egg yolk (10%) together with these lipids increased the size of crystal structures and markedly changed their shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号