首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Friedman  M Sheves  M Ottolenghi 《Biochemistry》1991,30(22):5400-5406
In variance with chlorophyll-based photosynthetic pigments, the triplet states of rhodopsins, either visual or photosynthetic, have not been observed experimentally. This is due to the ultrafast crossing from S1 to S0, which effectively competes with intersystem crossing to the triplet (T1) state. In order to populate T1 indirectly, laser photolysis experiments are performed with model protonated Schiff bases of retinal in solution, in which both inter- and intramolecular energy transfer to the polyene chromophore are carried out from an appropriate triplet energy donor. The experiments are then extended to bacteriorhodopsin (bR) by detaching the native retinal chromophore from the protein-binding site and replacing it by an analogous (synthetic) protonated Schiff base polyene, attached in a nonconjugated way to a naphthone triplet donor. Pulsed laser excitation of the latter moiety led, for the first time, to the observation of the triplet state of a rhodopsin. Possible locations and roles of the T1 state in bR and in visual pigments are discussed briefly.  相似文献   

2.
3.
A cyclopropanation reaction has been used to prepare two methanofullerenes bearing a 2,2'-bipyridine () or pyridine () ligand separated from the fullerene through an oxyethylene macrocyclic spacer. Derivatives and were, in turn, employed to synthesize two fullerene-based ruthenium(ii) and rhenium(i) donor-acceptor dyads whose molecular structure was confirmed by (1)H NMR, (13)C NMR and exact mass determination. The UV-Vis spectrum of the dyads is the superimposition of those of appropriate model systems, indicating that ground-state electronic interactions between the constituent chromophores, in solution, are negligible, in line also with the electrochemical results. The complex voltammetric pattern was characterized by the superimposition of signals attributed to one moiety or another without significant shifts with respect to their models. Furthermore, both species undergo partial chemical degradation in the time scale of cyclic voltammetry upon their multiple reduction. Photophysical properties of and , namely, excited state interactions between the ruthenium(ii) or rhenium(i) complexes and [60]fullerene have been investigated by steady-state and time-resolved UV-Vis-NIR luminescence spectroscopy that was complemented by nanosecond laser flash photolysis in CH(2)Cl(2) solutions. All experimental findings were set into relation with the corresponding reference compounds. More precisely, excitation of the metal complexes in and gives rise to a notable steady-state and time-resolved luminescence quenching of both metal to ligand charge transfer states (i.e., [Ru(bpy)(3)](2+) and [(bpy)Re(CO)(3)(py)](+)). Conclusive evidence about the nature of the photoproducts came from nanosecond laser flash photolysis. In these experiments, only the long-lived and oxygen-sensitive [60]fullerene triplets were detected. Two pathways are envisioned for this [60]fullerene triplet formation. Firstly, intramolecular transduction of the triplet excited state energy evolving from the photoexcited metal complexes. Secondly, intersystem crossing of directly excited [60]fullerene.  相似文献   

4.
Five symmetric (bis-substituted) and asymmetric (mono-substituted) analogues of E-stilbene and EE-1,4-diphenylbutadiene, where one or both the side aryls are 2'-thienyl or 3'-thienyl groups, have been studied by stationary and pulsed fluorimetric techniques, laser flash photolysis, conventional photochemical methods and theoretical calculations. The results obtained for these compounds and the comparison with those previously reported for three other compounds of the same series, allowed the effects of the position of the heteroatom and of the extension of the olefin chain on the excited state relaxation properties to be understood. The presence of one or two thienyl groups and their positional isomerism affect the spectral behaviour, the relaxation properties (radiative/reactive competition), the photoisomerization mechanism (singlet/triplet) and the ground state rotamerism. For the dienes containing the 3'-thienyl substituent(s), two rotamers were evidenced whose radiative and photochemical properties were obtained by selective excitation.  相似文献   

5.
The photochemical properties of alpha-cleavage of C-O bond in highly excited triplet states (T(n) with n>2) of p-biphenyl acetate and p-biphenyl benzoate (Me-OBP and Ph-OBP) in solution were investigated in comparison with those in the lowest excited singlet and triplet states by using single laser and sequential two-color two-laser photolysis techniques. Upon 266 nm laser photolysis of Me-OBP and Ph-OBP, occurrence of C-O bond cleavage in the excited singlet state was recognized from the observation of the formation of p-phenylphenoxy radical (PPR) in the transient absorption. The quantum yields (Phi(rad)) of the PPR formation were determined to be 0.29 and 0.24 for Me-OBP and Ph-OBP, respectively. Triplet sensitization using acetone (Ac) provided efficient formation of the lowest triplet states (T(1)) of Me-OBP and Ph-OBP, and the molar absorption coefficients of the triplet-triplet absorption were determined. No photochemical reactions were found in the T(1) state. Upon 355 nm laser flash photolysis of the T(1) states of Me-OBP and Ph-OBP, formation of PPR accompanied with decomposition of the triplet state was confirmed in the transient absorption. This observation indicated that alpha-cleavage proceeds in the highly excited triplet state. The quantum yields (Phi(dec)) of the decomposition in the dissociative highly excited triplet state (T(R)) were determined to be 0.25 and 0.15 for Me-OBP and Ph-OBP, respectively. The reaction mechanism for alpha-bond cleavage in the T(R) state was discussed.  相似文献   

6.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5-4.0 mus duration dye laser flash of varying intensities as an excitation source. The yield (phi) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectoscopy at 515 nm, while the yield phi following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10-12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from phi utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (greater than 10(16) photon . cm-2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1-2 mus after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules. At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse. A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a single-triplet bimolecular rate constant of gammast = 10(-8) cm3 . s-1, the following observations can be accounted for: (1) the rapid initial drop in phi and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   

7.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   


8.
The phototransformation of 2-chloro, 6-chloro and 2,6-dichloropurines under UVC excitation (254 nm) has been studied and the major photoproducts have been identified using absorption spectroscopy, HPLC and mass spectrometry. It was shown that hydroxypurines were formed as the main products for all three investigated compounds both in the presence and absence of oxygen. In the case of 6-chloro- and 2,6-dichloropurine, a photodimer is also formed as a minor photoproduct in the absence of oxygen but is efficiently quenched in the presence of oxygen. Nanosecond photolysis experiments also revealed significant intersystem crossing to the triplet state of the chloropurines which has been characterized (transient absorption spectra, triplet formation quantum yields and rate constants of quenching by oxygen, Mn(2+) ions and ground state). Experimental evidence allows to conclude that the triplet state is involved in photodimer formation whereas the hydroxypurine is formed from the reaction of the excited singlet state of chloropurines with the solvent (water addition) through heterolytic C-Cl bond rupture. Mass spectrometry and (1)H NMR results allowed to propose a chemical pathway for dimer formation in the case of 2,6-dichloropurine in a two-step process: first a homolytic rupture of C-Cl bond in the triplet state of the molecule with the formation of purinyl radicals, which subsequently react with an excess of ground state molecules and/or hydroxypurine primarily formed.  相似文献   

9.
The fluorescence quantum yield in spinach chloroplasts at room temperature has been studied utilizing a 0.5–4.0 μs duration dye laser flash of varying intensities as an excitation source. The yield (Ф) and carotenoid triplet concentration were monitored both during and following the laser flash. The triplet concentration was monitored by transient absorption spectroscopy at 515 nm, while the yield Ф following the laser was probed with a low intensity xenon flash. The fluorescence is quenched by factors of up to 10–12, depending on the intensity of the flash and the time interval following the onset of the flash. This quenching is attributed to a quencher Q whose concentration is denoted by Q. The relative instantaneous concentration of Q was calculated from Ф utilizing the Stern-Volmer equation, and its buildup and decay kinetics were compared to those of carotenoid triplets. At high flash intensities (1016 photon · cm−2) the decay kinetics of Q are slower than those of the carotenoid triplets, while at lower flash intensities they are similar. Q is sensitive to oxygen and it is proposed that Q, at the higher intensities, is a trapped chlorophyll triplet. This hypothesis accounts well for the continuing rise of the carotenoid triplet concentration for 1–2 μs after the cessation of the laser pulse by a slow detrapping mechanism, and the subsequent capture of the triplet energy by carotenoid molecules.

At the maximum laser intensities, the carotenoid triplet concentration is about one per 100 chlorophyll molecules. The maximum chlorophyll ion concentration generated by the laser pulses was estimated to be below 0.8 ions/100 chlorophyll molecules. None of the observations described here were altered when a picosecond pulse laser train was substituted for the microsecond pulse.

A simple kinetic model describing the generation of singlets and triplets (by intersystem crossing), and their subsequent interaction leading to fluorescence quenching, accounts well for the observations. The two coupled differential equations describing the time dependent evolution of singlet and triplet excited states are solved numerically. Using a singlet-triplet bimolecular rate constant of γst = 10−8 cm3 · s−1, the following observations can be accounted for: (1) the rapid initial drop in Ф and its subsequent levelling off with increasing time during the laser pulse, (2) the buildup of the triplets during the pulse, and (3) the integrated yield of triplets per pulse as a function of the energy of the flash.  相似文献   


10.
A number of polycyclic aromatic sulfur heterocycles have been identified in coal-derived products and in shale oils. The mutagenic activity of some of these compounds, including dibenzothiophene, benzo[b]naphtho[1,2-d]thiophene, benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene have been determined using the Salmonella/microsome mutagenicity test. These compounds demonstrated either very weak or no mutagenic activity. The methyl derivatives of each of these four compounds were assayed for mutagenic activity. Salmonella typhimurium TA98 was used as the tester strain. All assays required a rat-liver homogenate metabolic activator. Five of the methylated derivatives, 1-methylbenzo[b]naphtho[1,2-d]thiophene, 3-methylbenzo[b]naphtho[1,2-d]thiophene, 1-methylbenzo[b]-naphtho[2,1-d]thiophene, 6-methylbenzo[b]naphtho[2,1-d]thiophene and 4-methylbenzo[b]naphtho[2,3-d]thiophene demonstrated mutagenic activity. However, activity was observed only at high concentrations of the metabolic activator.  相似文献   

11.
The quenching ability of photogenerated oxidative species by some antimuscarinic drugs generically named atropines (e.g. atropine [I] eucatropine [II], homatropine [III] and scopolamine [IV]) have been investigated employing stationary photolysis, polarographic detection of dissolved oxygen, stationary and time-resolved fluorescence spectroscopy, and laser flash photolysis. Using Rose Bengal as a dye sensitiser for singlet molecular oxygen, O(2)((1)Delta(g)), generation, compounds I-IV behave as moderate chemical plus physical quenchers of the oxidative species. Correlation between kinetic and electrochemical data indicates that the process is possibly driven by a charge-transfer interaction. The situation is somewhat more complicated employing the natural pigment riboflavin (Rf) as a sensitiser. Compounds I and II complex Rf ground state, diminishing the quenching ability towards singlet and triplet excited state of the pigment. On the other hand, compounds III and IV effectively quench Rf excited states, protecting the pigment against photodegradation. Under anaerobic conditions, semireduced Rf (Rf(.-)) is formed through quenching of excited triplet Rf. Nevertheless, although Rf(.-) is a well-known generator of the reactive species superoxide radical anion by reductive quenching in the presence of oxygen, the process of O(2)((1)Delta(g)) production prevails over superoxide radical generation, due to the relatively low rate constants for the quenching of triplet Rf by the atropines (in the order of 10(7) M(-1)s(-1) for compounds III and IV) in comparison to the rate constant for the quenching by ground state oxygen, approximately two orders of magnitude higher, yielding O(2)((1)Delta(g)). Compound I is the most promising O(2)((1)Delta(g)) physical scavenger, provided that it exhibits the higher value for the overall quenching rate constant and only 11% of the quenching process leads to its own chemical damage.  相似文献   

12.
The kinetics and mechanistic aspects of the riboflavin-photosensitised oxidation of the topically administrable ophthalmic drugs Timolol (Tim) and Pindolol (Pin) were investigated in water-MeOH (9:1, v/v) solution employing light of wavelength > 400 nm. riboflavin, belonging to the vitamin B(2) complex, is a known human endogenous photosensitiser. The irradiation of riboflavin in the presence of ophthalmic drugs triggers a complex picture of competitive reactions which produces the photodegradation of both the drugs and the pigment itself. The mechanism was elucidated employing stationary photolysis, polarographic detection of dissolved oxygen, stationary and time-resolved fluorescence spectroscopy, and laser flash photolysis. Ophthalmic drugs quench riboflavin-excited singlet and triplet states. From the quenching of excited triplet riboflavin, the semireduced form of the pigment is generated, through an electron transfer process from the drug, with the subsequent production of superoxide anion radical (O(2)(*-)) by reaction with dissolved molecular oxygen. Through the interaction of dissolved oxygen with excited triplet riboflavin, the species singlet oxygen (O(2)((1)Delta(g))) is also generated to a lesser extent. Both O(2)(*-) and O(2)((1)Delta(g)) induce photodegradation of ophthalmic drugs, Tim being approximately 3-fold more easily photooxidisable than Pin, as estimated by oxygen consumption experiments.  相似文献   

13.
Novel optically active oligothiophenes bearing electron-donating chiral side chains have been prepared by synthetic methods suitable to achieve regioregular head-to-tail and head-to-head/tail-to-tail derivatives. In particular, the chiral (S)-(2-methyl)butyl moiety was linked at position 3 of the thiophene ring through heteroatoms, such as S or O, to evaluate its effect on the macro molecular aggregation and, consequently, on the chiroptical properties of the material in the solid state. The materials have been fully characterized and investigated by optical and chiroptical methods upon aggregation both from the solution and as cast films. Compared with the related head-to-tail and head-to-head/tail-to-tail poly(3-alkyl)thiophene derivatives, with the same optically active moiety directly linked to the ring and possessing a higher polymerization degree, the chiroptical properties of the newly synthesized oligomers were significant, or even better, and provided insight into the role of intrachain–interchain interactions between the heteroatom and the thienyl sulfur atom.  相似文献   

14.
Synthesis and photophysical properties of three Ru(bpy)(3)(2+)-Ptz (bpy = 2,2'-bipyridine and Ptz = phenothiazine) dyads, where the number of Ptz groups increased from one to three, are reported. The MLCT absorption bands of these compounds were slightly red shifted compared to Ru(bpy)(3)(2+). The emission, however, was highly quenched and this is attributed to electron transfer from the Ptz moiety to the excited Ru(bpy)(3)(2+) to generate the charge separated state Ru(bpy)(3)(+)-Ptz (+). Observed electron transfer rates (k(et) > 10(8) s(-1)) were much faster than those previously reported (k(et) < 10(7) s(-1)) for linked Ru(bpy)(3)(2+)-Ptz systems. Compared to the previous systems, back electron transfer rates in these systems were about 100 times slower. This has enabled us to observe the charge separated state in nanosecond flash photolysis experiments. Transient absorptions assignable to Ru(bpy)(3)(+) and Ptz (+), having lifetimes in the range of 10-30 ns were observed. In order to explain the fast charge separation and slow charge recombination rates, formation of a folded conformer where the Ptz group attached to one bpy residue comes closer to and associates with another bpy moiety was invoked. A scheme which explains the fast electron transfer and slow recombination in this pre-associated state is proposed.  相似文献   

15.
Laser flash photolysis has been used to study the triplet excited state of benzophenone B(T), on various surfaces, SiO(2), zeolites NaY, KY, NaX and KX, and in rigid media at room temperature, polyethylene and polymethylmethacrylate. The studies point to similarities of the spectroscopy and kinetics of B(T) in fluid solution, in a solid matrix (polymers) and on a SiO(2) surface. However, stark differences are observed for B(T) in zeolites where the absorption spectrum mimics that of the protonated ketone, and the reactivities of B(T) with C(6)H(12) and CH(3)OH are an order of magnitude smaller than those in liquid C(6)H(12) and CH(3)OH. Inclusion of ammonia, which blocks acidic sites in the zeolite, produces a triplet spectrum which is similar to that in polar solution. The reactivity of the triplet with ammonia in a zeolite is also comparable to that observed for this reaction in polar solution. These data are discussed in terms of the interaction of benzophenone with acidic sites in the zeolites, and to restrictions placed on the reactants in the zeolite cages. The blocking of the zeolite acidic sites by ammonia produces spectral and kinetic data (reactivity with NH(3)) of the triplet that are comparable to those observed in solution. This is one of the few cases where zeolites inhibit rather than promote reactions of a solute adsorbed in them.  相似文献   

16.
Crystal structure of the imiquimod has been determined by single crystal X-ray analysis, imiquimod crystallizes in orthorhombic space group P2(1)2(1)2(1) and the molecules are linked along the c axis by the strong N-H ... N hydrogen bonds. A density functional theory (DFT) study on the electronic properties of imiquimod and its synthetic intermediates has been performed at B3LYP/6-31G* level, while taking solvent effects into account. Both the single configuration interaction (CIS) method and the time-dependent DFT (TDDFT) approaches have been used to calculate the electronic absorption spectra, and there is a good agreement between the calculated and experimental UV-visible absorption spectra. The fluorescence emission spectra of these three compounds in solution have also been measured, the relatively low fluorescence intensity is attributed to a chlorine-modulated heavy atom effect that enhances intersystem crossing between excited singlet and triplet states, and the relatively high fluorescence intensity of imiquimod results from an extended pi-conjugated system which enhances S(1)-->S(0) radiant transition.  相似文献   

17.
Two dyads containing a naphthalene-like chromophore linked to a pyrrolidine-derived moiety, namely (S,S)- and (R,S)-NPX-PYR, have been synthesised by esterification of (S)- or (R)-naproxen (NPX) with (S)-N-methyl-2-pyrrolidinemethanol (PYR) and submitted to photophysical studies (steady-state and time-resolved fluorescence, as well as laser flash photolysis). The emission spectra of the dyads in acetonitrile were characterised by a typical band centred at 350 nm, identical to that of the reference compound (S)-NPX. However the intensities were clearly different, revealing a significant intramolecular quenching in the dyads, as well as a remarkable stereodifferentiation (factor of 1.6). Accordingly, the fluorescence lifetimes of the two dyads were different from each other and markedly shorter than that of (S)-NPX. The quenching mechanism is intramolecular electron transfer, that is thermodynamically favoured. Exciplex formation, that is nearly thermoneutral, does not compete efficiently. The electron transfer rate constants for (S,S)- and (R,S)-(NPX-PYR) were 1.8 x 10(8) and 2.8 x 10(8) s(-1), respectively. By contrast, no significant intramolecular quenching was observed for the excited triplet states (lambda(max)= 440 nm), generated by laser flash photolysis; this is in agreement with the fact that intramolecular electron transfer is thermodynamically disfavoured, due to the lower energy of excited triplets.  相似文献   

18.
The photochemistry of three structurally very similar triphenylmethylsilanes 1, 2, 3 [p-X-C(6)H(4)-CPh(2)-SiMe(3): X = PhCO, 1; H, ; Ph(OCH(2)CH(2)O)C, 3] is described by means of 248 and 308 nm nanosecond laser flash photolysis (ns-LFP), femtosecond LFP, EPR spectroscopy, emission spectroscopy (fluorescence, phosphorescence), ns-pulse radiolysis (ns-PR), photoproduct analysis studies in MeCN, and X-ray crystallographic analysis of the two key-compounds 1 and 2. The photochemical behavior of 1, 2 and 3 is discussed and compared with that of a fourth one, 4, bearing on the p-position an amino group (X = Me(2)N) and whose detailed photochemistry we reported earlier (J. Org. Chem., 2000, 65, 4274-4280). Silane 1 undergoes on irradiation with 248 and 308 nm laser light a fast photodissociation of the C-Si bond giving the p-(benzoyl)triphenylmethyl radical (1*) with a rate constant of k(diss)= 3 x 10(7) s(-1). The formation of 1* is a one-quantum process and takes place via the carbonyl triplet excited state with high quantum yield (Phi(rad)= 0.9); the intervention of the triplet state is clearly demonstrated through the phosphorescence spectrum and quenching experiments with ferrocene (k(q)= 9.3 x 10(9) M(-1) s(-1)), Et(3)N (1.1 x 10(9) M(-1) s(-1)), and styrene (3.1 x 10(9) M(-1) s(-1)) giving quenching rate constants very similar to those of benzophenone. For comparative reasons radical 1* was generated independently from p-(benzoyl)triphenylmethyl bromide via pulse radiolysis in THF and its absorption coefficient at lambda(max)= 340 nm was determined ([epsilon]= 27770 M(-1) cm(-1)). We found thus that the p-PhCO-derivative 1 behaves similar to the p-Me(2)N one (the latter giving the p-(dimethylamino)triphenylmethyl radical with Phi(rad)= 0.9), irrespective of their completely different ground state electronic properties. In contrast, compounds 2, 3 that bear only the aromatic chromophore give by laser or lamp irradiation both, (i) radical products [Ph(3)C* and p-Ph(OCH(2)CH(2)O)C-C(6)H(4)-C(*)Ph(2), respectively] after dissociation of the central C-Si bond (Phi(rad)= 0.16), and (ii) persistent photo-Fries rearrangement products (of the type of 5-methylidene-6-trimethylsilyl-1,3-cyclohexadiene) absorbing at 300-450 nm and arising from a 1,3-shift of the SiMe(3) group from the benzylic to the ortho-position of the aromatic ring (Phi approximately 0.85 for 2). Using fs-LFP on 2 we showed that the S(1) state recorded at 100 fs after the pulse decays on a time scale of 500 fs giving Ph(3)C* through C-Si bond dissociation. In a second step and within the next 10 ps trityl radicals either escape from the solvent cage (the quantum yield of Ph(3)C* formation Phi(rad)= 0.16 was measured with ns-LFP), or undergo in-cage recombination to photo-Fries products. Thus, singlet excited states (S(1)) of the aromatic organosilanes (2, 3) prefer photo-Fries rearrangement products, while triplet excited states (1, 4) favor free radicals. Both reactions proceed via a common primary photodissociation step (C-Si bond homolysis) and differentiate obviously in the multiplicity of the resulting geminate radical pairs; singlet radical pairs give preferably photo-Fries products following an in-cage recombination, while triplet radical pairs escape the solvent cage (MeCN). The results demonstrate the crucial role which is played by the chromophore which prescribes in a sense, (i) the multiplicity of the intervening excited state and consequently that of the resulting geminate radical pair, and (ii) the dominant reaction path to be followed: the benzophenone- and anilino-chromophore present in silanes 1 and 4, respectively, impose effective intersystem crossing transitions (k(isc)= 10(11) s(-1) and 6 x 10(8) s(-1), respectively) leading to triplet states and finally to free radical products, while the phenyl chromophore in 2 and 3, possessing ineffective isc (k(isc)= 6 x 10(6) s(-1)) leads to photo-Fries product formation via the energetic high lying S(1) state [approximately 443 kJ mol(-1)(106 kcal mol(-1))].  相似文献   

19.
Bacterial Transformations of Naphthothiophenes   总被引:1,自引:0,他引:1       下载免费PDF全文
Naphthothiophenes are minor components of fossil fuels, and they can enter the environment from oil spills. Naphtho[2,1-b]thiophene, naphtho[2,3-b]thiophene, and 1-methylnaphtho[2,1-b]thiophene were synthesized and used in biodegradation studies with 1-methylnaphthalene (1-MN)-degrading Pseudomonas strains W1, F, and BT1. Cultures were incubated with one of the naphthothiophenes with or without 1-MN, acidified, and extracted with CH(inf2)Cl(inf2). The extracts were analyzed by gas chromatography with flame photometric and mass detectors to characterize sulfur-containing metabolites and with an atomic emission detector for quantification. Only strain W1 was able to grow on naphtho[2,1-b]thiophene, but strains F and BT1 cometabolized this compound if 1-MN was present. 1-MN was required by all three strains to metabolize naphtho[2,3-b]thiophene, which was more resistant to biodegradation than the [2,1-b] isomer. Two metabolites of naphtho [2,1-b]thiophene were purified, analyzed by (sup1)H nuclear magnetic resonance spectroscopy, and found to be 4-hydroxybenzothiophene-5-carboxylic acid (metabolite I) and 5-hydroxybenzothiophene-4-carboxylic acid (metabolite II). In cultures of strain W1 grown for 7 days on 52 (mu)mol of naphtho[2,1-b]thiophene, >84% of the substrate was degraded and metabolites I and II accounted for 19 and 9%, respectively, of the original amount of naphtho[2,1-b]thiophene. When 1-MN was present, strain W1 degraded >97% of the naphtho[2,1-b]thiophene and similar amounts of metabolite II were produced, but metabolite I did not accumulate. 1-MN was shown to promote the further degradation of metabolite I, but not of metabolite II, by strain W1. Thus, 1-MN enhanced the biodegradation of naphtho[2,1-b]thiophene. Approximately 70% of the 1-methylnaphtho [2,1-b]thiophene added to cultures of strain W1 with 1-MN was recovered as 4-hydroxy-3-methylbenzothiophene-5-carboxylic acid, the 3-methyl analog of metabolite I. The methyl substitution hindered further metabolism of 3-methyl-metabolite I even in the presence of 1-MN. Cometabolism of naphtho[2,3-b]thiophene yielded two products that were tentatively identified as 5-hydroxybenzothiophene-6-carboxylic and 6-hydroxybenzothiophene-5-carboxylic acids.  相似文献   

20.
Effects of intra- and intermolecular hydrogen-bonds on the photophysical properties of 2'-aminoacetophenone derivatives (X-C6H4-COCH3) having a substituted amino group (X) with different hydrogen-bonding ability to the carbonyl oxygen (X: NH2(AAP), NHCH3(MAAP), N(CH3)2(DMAAP), NHCOCH3(AAAP), NHCOCF3(TFAAP)) are investigated by means of steady-state and time-resolved fluorescence spectroscopy and time-resolved thermal lensing. Based on the photophysical parameters obtained in aprotic solvents with different polarity and protic solvents with different hydrogen-bonding ability, the characteristic photophysical behavior of the 2'-aminoacetophenone derivatives is discussed in terms of hydrogen-bonding and n,pi*-pi,pi* vibronic coupling. The dominant deactivation process of AAP and MAAP in nonpolar aprotic solvents is the extremely fast internal conversion (k(ic)= 1.0 x 10(11) s(-1) for AAP and 3.9 x 10(10) s(-1) for MAAP in n-hexane). The internal conversion rates of both compounds decrease markedly with increasing solvent polarity, suggesting that vibronic interactions between close-lying S1(pi,pi*) and S2(n,pi*) states lead to the large increase in the non-radiative decay rate of the lowest excited singlet state. It is also suggested that for MAAP, which has a stronger hydrogen-bond as compared to AAP, an intramolecular hydrogen-bonding induced deactivation is involved in the dissipation of the S1 state. For DMAAP, which cannot possess an intramolecular hydrogen-bond, the primary relaxation mechanism of the S1 state in nonpolar aprotic solvents is the intersystem crossing to the triplet state, whereas in protic solvents very efficient internal conversion due to intermolecular hydrogen-bonding is induced. In contrast, the fluorescence spectra of AAAP and TFAAP, which have an amino group with a much stronger hydrogen-bonding ability, give strongly Stokes-shifted fluorescence, indicating that these compounds undergo excited-state intramolecular proton transfer reaction upon electronic excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号