首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n?=?10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.  相似文献   

2.
Isolation of Frankia Strains from Alder Actinorhizal Root Nodules   总被引:9,自引:4,他引:5       下载免费PDF全文
A simple procedure, based on the rapid filtration and washing of Frankia vesicle clusters, was devised for the isolation of Frankia strains from alder actinorhizal root nodules. Of 46 Alnus incana subsp. rugosa nodules prepared, 42 yielded isolates. A simple medium containing mineral salts, Casamino Acids, and sodium pyruvate proved to be the most effective for isolation. In general, colonies appeared 6 to 20 days after inoculation. On the basis of hyphal morphology, two distinct types of Frankia strains were characterized. Randomly selected isolates were tested for infectivity, and all formed root nodules on A. glutinosa. Because of its simplicity and efficiency, the procedure is an improved method for the study of Frankia diversity in alder root nodules.  相似文献   

3.
With the genomes of three Frankia strains available, high-throughput proteomics methods can be used to reveal the set of proteins expressed by these bacteria in symbiosis with plants. A question we address is the degree to which the known genomes can be used to study proteomes of uncharacterized frankiae growing in field-collected root nodules. To this end, we have characterized the symbiotic proteomes of Frankia from three plant species, Alnus incana subsp. rugosa, Ceanothus americanus, and Elaeagnus angustifolia. Root nodule proteins were identified using two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC MS/MS) of trypsin-digested protein samples. We identified 1300 Frankia proteins in A. incana nodules using the Frankia alni ACN14a genome and 1100 proteins from E. angustifolia nodules using the EAN1pec genome. In addition, over 100 proteins were identified from C. americanus nodules using a more limited one dimensional LC MS/MS analysis. Many of the most abundant proteins identified are involved in energy and nitrogen metabolism. The enzyme nitrogenase and the nitrogenase iron protein were among the most abundant proteins, reflecting the major process occurring in symbiosis. Several hundred plant proteins were also identified. We highlight the power of proteomics to uncover the physiology of symbiotic Frankia in the environment using heterologous genome information.  相似文献   

4.
Two alder species,Alnus glutinosa (L.) Gaertn. andAlnus incana (L) Moench, were inoculated with a Sp+ Frankia homogenate obtained fromA. incana root nodules. This inoculum formed effective nodules on the original host plant and ineffective nodules onA. glutinosa. Grafts between the two alder species were made to determine which part of the plant is involved in this phenomenon. The results obtained indicate that the compatibility between Alnus andFrankia is restricted to the root system.  相似文献   

5.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

6.
The efficiency of different FinnishFrankia strains as symbionts onAlnus incana (L.) Moench was evaluated in inoculation experiments by measuring nitrogen fixation and biomass production. Since all available pure cultures ofFrankia are of the Sp type (sporangia not formed in nodules), but the dominant nodule endophyte ofA. incana in Finland is of the Sp+ type (sporangia formed in nodules), crushed nodules of thisFrankia type were included. The Sp pure cultures, whether originating fromA. incana orA. glutinosa, produced with one exception, similar biomass withA. incana. The highest biomass was produced with an American reference strain fromA. viridis crispa. Using Sp+ nodule homogenates fromA. incana as inoculum, the biomass production was only one third of that produced by Sp pure cultures from the same host. Hence, through selection of the endophyte it is possible to exert a considerable influence on the productivity ofAlnus incana.  相似文献   

7.
Actinorhizal plants have been found in eight genera belonging to three orders (Fagales, Rosales and Cucurbitales). These all bear root nodules inhabited by bacteria identified as the nitrogen-fixing actinobacterium Frankia. These nodules all have a peripheral cortex with enlarged cells filled with Frankia hyphae and vesicles. Isolation in pure culture has been notoriously difficult, due in a large part to the growth of fast-growing contaminants where, it was later found, Frankia was slow-growing. Many of these contaminants, which were later found to be Micromonospora, were obtained from Casuarina and Coriaria. Our study was aimed at determining if Micromonospora were also present in other actinorhizal plants. Nodules from Alnus glutinosa, Alnus viridis, Coriaria myrtifolia, Elaeagnus x ebbingei, Hippophae rhamnoides, Myrica gale and Morella pensylvanica were tested and were all found to contain Micromonospora isolates. These were found to belong to mainly three species: Micromonospora lupini, Micromonospora coriariae and Micromonospora saelicesensis. Micromonospora isolates were found to inhibit some Frankia strains and to be innocuous to other strains.  相似文献   

8.
Plants ofAlnus incana (L.) Moench in symbiosis with a local source ofFrankia were exposed to prolonged darkness under controlled climate conditions.Frankia vesicle clusters were prepared from the root nodules, and the condition ofFrankia was measured as respiratory capacity by supplying the preparation with saturating amounts of four different substrates. During darkness, nitrogenase (EC 1.7.99.2) activity decreased in intact plants and in the vesicle-cluster preparations. The respiratory capacity ofFrankia also decreased. After 4 d in darkness most respiration was lost, though all nitrogenase activity was already lost after 3 d. When the dark treatment was ended after 2 d and normal light/dark conditions restored, nitrogenase activity immediately started to recover. The respiratory capacity continued to decrease and no recovery was observed until the third day after the end of the dark treatment. Whole-plant nitrogenase activity slowly increased at a rate similar to the rate of increase observed in untreated plants. Transmission electron micrographs of the root nodules showed that the cytoplasm of infected host cells and the cells ofFrankia were structurally degraded in response to dark treatment, while young vesicles were frequent during recovery. Growth and differentiation ofFrankia cells were apparently important for recovery of the enzyme activities studied.  相似文献   

9.
Factors affecting the establishment of Alnus/Frankia symbioses were studied partly by following the survival ofFrankia strains exposed to different soil conditions, and partly by investigating the effect of pH on nodulation. TwoFrankia strains were used, both of the Sp type (sporangia not formed in nodules). One of the strains sporulated heavily, while the other formed mainly hyphae. The strains originated fromAlnus incana root nodules growing in soils of pH 3.5 and 5.0. The optimum pH for their growth in pure culture was found to be 6.7 and 6.2, respectively. The strains were introduced into twoFrankia-free soils, peat and fine sand. Their survival, measured as the persistance of nodulation capacity using the plant infection technique, was followed for 14 months. The survival curves of the strains were similar despite the morphological differences between the strains in pure culture. The nodulation capacities declined over time both at 14 and 22°C. Survival was better in soils limed to a pH above 6 than in soils at their original pH (peat 2.9, fine sand 4.2). The effect of pH on nodule formation in Alnus seedlings by theFrankia strains was studied in liquid culture. The number of nodules increased linearly within the pH range studied (3.5–5.8). No nodules were formed at pH 3.5.  相似文献   

10.
Amplified fragment length polymorphism (AFLP) was tested as an alternative to the DNA-DNA hybridization technique (DDH) to delineate genomospecies and the phylogenetic structure within the genus Frankia. Forty Frankia strains, including representatives of seven DDH genomospecies, were typed in order to infer current genome mispairing (CGM) and evolutionary genomic distance (EGD). The constructed phylogeny revealed the presence of three main clusters corresponding to the previously identified host-infecting groups. In all instances, strains previously assigned to the same genomospecies were grouped in coherent clusters. A highly significant correlation was found between DDH values and CGM computed from AFLP data. The species definition threshold was found to range from 0.071 to 0.098 mismatches per site, according to host-infecting groups, presumably as a result of large genome size differences. Genomic distances allowed new Frankia strains to be assigned to nine genomospecies previously determined by DDH. The applicability of AFLP for the characterization of uncultured endophytic strains was tested on experimentally inoculated plants and then applied to Alnus incana and A. viridis field nodules hosting culture refractory spore-positive (Sp+, that sporulate in planta) strains. Only 1.3% of all AFLP fragments were shown to be generated by the contaminant plant DNA and did not interfere with accurate genomospecies identification of strains. When applied to field nodules, the procedure revealed that Alnus Sp+ strains were bona fide members of the Alnus-Myrica host infecting group. They displayed significant genomic divergence from genomospecies G1 of Alnus infecting strains (i.e. Frankia alni) and thus may belong to another subspecies or genomospecies.  相似文献   

11.
Oligonucleotide probes that hybridize with specific sequences in variable regions of the 16S rRNA of the nitrogen-fixing actinomycete Frankia were used for the identification of Frankia strains in nodules. Frankia cells were released from plant tissue by grinding glutaraldehyde-fixed root nodules in guanidine hydrochloride solution. rRNA was obtained after sonication, precipitation with ethanol, and purification by phenolchloroform extraction. Degradation of rRNA, evident in Northern blots, did not affect hybridization with the oligonucleotides. Nodules of about 1 mg (fresh weight) provided sufficient rRNA for reliable detection of the Frankia strain. The utility of this rRNA extraction method was tested in a competition experiment between two effective Frankia strains on cloned Alnus glutinosa plants.  相似文献   

12.
Summary The presence in soil ofFrankia, capable of forming nitrogen-fixing root nodules onAlnus incana (L.) Moench, was investigated. Intact soil cores from forested as well as disturbed sites were sampled and both alder-rich and alder-free sites were included in the study. Surface-sterilized alder seeds were sown in the soil cores which were kept in sterile culture tubes in a growth chamber. Root nodules with nitrogenase activity developed in soil cores from all sites studied. Thus, infective and effectiveFrankia was present in all of the soils sampled, even from sites free from actinorhizal plants and irrespective of pH and nitrogen content of the soils.  相似文献   

13.
Diversity of Frankia isolates originating from lobes of single nodules collected on Alnus glutinosa root systems has been analyzed using isozyme electrophoresis method. Analysis of isozyme patterns showed no divergence among strains isolated from the same nodule. Each nodule (among 10 assayed) was inhabited by a single Frankia strain.  相似文献   

14.
Symbiotic and free-living Frankia were investigated for correlation between hydrogenase activities (in vivo/in vitro assays) and for occurrence and localization of hydrogenase protein by Western blots and immuno-gold localization, respectively. Freshly prepared nodule homogenates from the symbiosis between Alnus incana and a local source of Frankia did not show any detectable in vivo or in vitro hydrogenase uptake activity, as also has been shown earlier. However, a free-living Frankia strain originally isolated from these nodules clearly showed both in vivo and in vitro hydrogenase activity, with the latter being approximately four times higher. Frankia strain Cpl1 showed hydrogen uptake activity both in symbiosis with Alnus incana and in a free-living state. Western blots on the different combinations of host plants and Frankia strains used in the present study revealed that all the Frankia sources contained a hydrogenase protein, even the local source where no in vivo or in vitro activity could be measured. The 72 kilodalton protein found in the symbiotic Frankia as well as in the free-living Frankia strains were immunologically related to the large subunit of a dimeric hydrogenase purified from Alcaligenes latus. Recognitions to polypeptides with molecular masses of about 41 and 19.5 kilodaltons were also observed in Frankia strain UGL011101 and in the local source of Frankia, respectively. Immunogold localization of the protein demonstrated that in both the symbiotic state and the free-living nitrogen-fixing Frankia, the protein is located in vesicles and in hyphae. The inability to measure any uptake hydrogenase activity is therefore not due to the absence of hydrogenase enzyme. However, the possibility of an inactive hydrogenase enzyme cannot be ruled out.  相似文献   

15.
Acetylene reduction assays were shown to inactivate uptake hydrogenase activity to different extents in one Casuarina and two Alnus symbioses. Inactivation was found to be caused by C2H2 and not by C2H4. Acetylene completely inactivated the hydrogenase activity of intact root systems of Alnus incana inoculated with Frankia strain Avcl1 in 90 minutes, as shown by a drop in the relative efficiency of nitrogenase from 1.0 to 0.73. The hydrogenase of Frankia preparations (containing vesicles) and of cell-free extracts (not containing vesicles) from the same symbiosis was much more susceptible to acetylene inactivation. Cell-free extracts lost all hydrogenase activity after 5 minutes of exposure to acetylene. The hydrogenase activity of intact root systems of Casuarina obesa was less sensitive to acetylene than that of root systems of A. incana, since the relative efficiency of nitrogenase changed only from 1.0 to 0.95 over 90 minutes. Frankia preparations and cell-free extracts of C. obesa still retained hydrogenase activity after a 10 minute-exposure to acetylene.  相似文献   

16.
Host compatibility of different spore-positive (Sp+)and spore-negative (Sp?) strain types of Frankia from alder stands in Finland was studied in Modulation tests with hydrocultures of Alnus glutinosa (L.) Gaertner, A. incana (L.) Moench and A. nitida Endl. Root nodules and soil samples from stands of A. incana (Lammi forest and Hämeenlinna forest) were dominated by Sp + types of Frankia (coded AiSp+ and AiSp+ H. respectively), which caused effective root nodules in test plants of A. incana, but failed to induce nodules in A. nitida. In A. glutinosa Frankia strain types AiSp + and AiSp + H caused small, ineffective root nodules with sporangia (coded Ineff ?), which were recognized by the absence or near absence of vesicles in the nodule tissue. Ineffective nodules without sporangia (coded Ineff ?) were induced on A. glutinosa with soil samples collected at Lammi swamp. The spore-negative strain type of Frankia was common in root nodules of A. glutinosa in Finland (Lammi swamp) and caused effective Sp? type root nodules (coded AgSp ?) in hydrocultures of A. incana, A. glutinosa and A. nitida. A different Sp + strain type of Frankia. coded AgSp+ Finland, was occasionally found in stands of A. glutinosa. It was clearly distinguished from strain type AiSp + by the ability to produce effective nodules on both A. glutinosa and A. incana. The nodulation capacities of soil and nodule samples were calculated from the nodulation response in hydrocutlure and served as a measure for the population density of infective Frankia particles. Sp + nodules from both strain types had equal and high nodulation capacities with compatible host species. The nodulation capacities of Sp type root nodules from A. glutinosa were consistently low. High frequencies of Frankia AiSp+ and AiSp+ H were found in the soil environment of dominant AiSp + nodule populations on A. incana. The numbers of infective particles of this strain type were insignificant in the soil environment of nearby Sp ? nodule populations on A. glutinosa and in the former field at Hämeen-linna near the Sp+ nodule area in Hämeenlinna forest. Strain type AgSp? had low undulation capacity in the soil environment of both A. incana and A. glutinosa stands, Explanations for the strong associations between Frankia strain types AiSp+ and AiSp ? H and A. incana and between strain type AgSp? and A. glutinosa are discussed in the light of host specificity and of some characteristics of population dynamics of both strain types. The possible need to adapt the concept of Frankia strain types Sp + and Sp ? to strains with some variation in spore development was stressed by the low potentials of strain type AiSp + H to develop spores in symbioses with hydrocultures of A. incnna.  相似文献   

17.
The genetic diversity of Frankia strains nodulating Alnus glutinosa along the basin of the Tormes River was studied on DNA extracted directly from nodules. Frankia strains inhabiting root nodules at 12 different locations, ranging in altitude from 409 to 1181 m, were characterized. For that, we amplified the whole IGS region between 16S–23S rDNA and performed a restriction fragment length polymorphism (RFLP) analysis with four restriction enzymes. Two different RFLP patterns (termed A and B) were obtained with HaeIII, indicating the existence of two different groups of Frankia strains. Three different nodule extracts from each of the two RFLP groups were selected for further analyses. Sequencing of the 16S–23S rDNA IGS showed a 100% of intragroup homology and also confirmed the difference (98.4% level of similarity) between the Frankia strains in the two nodule extract groups. The phylogenetic analyses based on the two 16S–23S rDNA IGS sequences obtained in this study and other previously published sequences indicated that Frankia strains TFAg5 and TFAg23 (chosen as representative of HaeIII–RFLP group A and B, respectively) are quite similar to other strains nodulating plants of A. rhombifolia and A. viridis in California (pairwise levels of similarity including gaps ranged from 97.8% to 98.6%), together with which they form a single group. To put the Frankia strains representative of each HaeIII–RFLP group in the context of overall Frankia diversity we amplified and sequenced the 16S rDNA and glnII gene from nodular DNA. An also remarkable fact found in this study was that Frankia strains belonging to the HaeIII–RFLP group A were distributed all along the river course, from the lowest site sampled to the highest, while Frankia strains placed into RFLP group B were restricted to the upper Tormes River, being exclusively found at altitudes of 946 m or higher.  相似文献   

18.
The distribution of spore-positive (sp+) and spore-negative (sp−) root nodules ofAlnus incana ssp.rugosa (DuRoi) Clausen (speckled alder) was examined at 29 sites with a wide range of environmental conditions in Maine, USA. These included: pH 3.4 to 7.0, soil texture ranging from coarse gravel to clay to organic soils, elevation from 3 to 591 m and latitude 43 to 47°N. Habitat types included disturbed areas, streamsides, swamps and old fields. Sp (−) nodules were substantially more common, making up 76% of all nodules, whereas only 24% were sp (+). Sp (−) nodules often occurred in pure stands and predominated at disturbed sites with mineral soils at the surface and in old fields and swamps with pH>4.0 Sp (+) nodules were nearly always found in mixture with sp (−) nodules. They occurred primarily at streamside and lakeshore sites where they made up 40% of the nodules and at sites with pH<4.0 regardless of habitat type. It is suggested that sp (−) strains ofFrankia may be maintained at a site by saprophytic growth in soil and thus nodulate newly established hosts, whereas sp (+) strains may be maintained primarily by spore production within nodules and thus depend on extended presence of the host.  相似文献   

19.
Frankia is the diverse bacterial genus that fixes nitrogen within root nodules of actinorhizal trees and shrubs. Systematic and ecological studies of Frankia have been hindered by the lack of morphological, biochemical, or other markers to readily distinguish strains. Recently, nucleotide sequence of 16 S RNA from the small ribosomal subunit has been used to classify and identify a variety of microorganisms. We report nucleotide sequences from portions of the 16 S ribosomal RNA from Frankia strains AcnI1 isolated from Alnus viridis ssp. crispa (Ait.) Turrill and PtI1 isolated from Purshia tridentata (Pursh) DC. The number of nucleotide base substitutions and gaps we find more than doubles the previously reported sequence diversity for the same variable regions within other strains of Frankia.  相似文献   

20.
To quantify the genetic diversity of Frankia bacteria associated with Alnus rubra in natural settings and to examine the relative importance of site age, management, and geographic location in structuring Frankia assemblages in A. rubra forests, root nodules from four A. rubra sites in the Pacific Northwest, USA were sampled. Frankia genetic diversity at each site was compared using sequence-based analyses of a 606 bp fragment of the nifH gene. At a 3% sequence similarity cutoff, a total of 5 Frankia genotypes were identified from 317 successfully sequenced nodules. Sites varied in the total number of genotypes present, but were typically dominated by only one or two genotypes. Phylogenetic analyses showed that all of the A. rubra-Frankia genotypes grouped with other Alnus-infective Frankia. Analysis of similarity (ANOSIM) and chi-square analyses indicated that Frankia assemblages were more strongly influenced by site age/management than geographic location. This study demonstrates that the Frankia assemblages in A. rubra forests have low genotype diversity, but that genotype abundance can differ significantly in forests of different age/management history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号