首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Previously we compared the mutational specificities of polychromatic UVB (285-320 nm) and UVC (254 nm) light in the SUP4-o gene of the yeast Saccharomyces cerevisiae. Striking similarities in the types and distributions of induced SUP4-o mutations were consistent with roles for cyclobutane dimers and pyrimidine(6-4)pyrimidone photoproducts in mutation induction by UVB. To assess the relative importance of cyclobutane dimers, we have now examined the effect of photoreactivation (PR), which specifically reverses these lesions, on UVB and UVC induction of SUP4-o mutations. PR reduced the frequencies of both UVB and UVC mutagenesis by approximately 75%. Collections of 138 and 158 SUP4-o mutants induced by treatment with UVB plus PR or UVC plus PR, respectively, were characterized by DNA sequencing and the results were compared to those for 208 UVB and 211 UVC-induced mutants analyzed earlier. PR decreased the frequency of UVB-induced G.C----A.T transitions by 85%, diminished the substitution frequencies at individual sites by 64% on average, and reduced the mutation frequencies at the five UVB hotspots by 87%. A more detailed examination revealed that the transition frequencies at the 3' base of 5'-TC-3' and 5'-CC-3' sequences were decreased by 90% and 72%, respectively. Finally, PR appeared to occur to the same extent on both the transcribed and non-transcribed strands of SUP4-o. Similar results were obtained for PR following UVC irradiation. Our findings indicate that cyclobutane dimers are responsible for the majority of UVB mutagenesis in yeast.  相似文献   

2.
The action of T4 endonuclease V on DNA containing various photoproducts was investigated. (1) The enzyme introduced strand breaks in DNA from ultraviolet-irradiated vegetative cells of Bacillus subtilis but not in DNA from irradiated spores of the same organism. DNA irradiated with long wavelength (360 nm peak) ultraviolet light in the presence of 4,5',8-trimethylpsoralen was not attacked by the enzyme. These results indicate that 5-thyminyl 5,6-dihydrothymine (spore photoproduct) and psoralen mediated cross-links in DNA are not recognized by T4 endonuclease V. (2) DNA of phage PBS1, containing uracil in place of thymine, and DNA of phage SPO1, containing hydroxymethyluracil in place of thymine, were fragmented by the enzyme when the DNA's had been irradiated with ultraviolet light. T4 endonuclease V seems to act on DNA with pyrimidine dimers whether the dimers contain thymine residues or not.  相似文献   

3.
Mutations induced by ultraviolet light   总被引:12,自引:0,他引:12  
The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA bases. We also discuss the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis.  相似文献   

4.
Wang Y  Gross ML  Taylor JS 《Biochemistry》2001,40(39):11785-11793
Recently, it was reported that TATA-binding protein (TBP) enhances (6-4) photoproduct formation in a TATA box under UVC irradiation [Aboussekhra and Thoma (1999) EMBO J. 18, 433-443]. The conclusions of that study were based on an indirect enzymatic assay that was not specific for (6-4) photoproducts. Herein we report the use of a recently developed coupled enzymatic digestion/mass spectrometry assay [Wang et al. (1999) Chem. Res. Toxicol. 12, 1077-1082] to identify unambiguously and quantify the photoproducts formed in a TATA box-containing dodecamer duplex sequence in the presence or absence of TBP binding. Exposure of the adenovirus major late promoter TATA box to a high dose of UVC irradiation in the absence of the C-terminal domain of yeast TBP leads to predominant formation of the cis-syn dimer within the T(4) tract, whereas exposure in the presence of TBP leads to almost exclusive formation of the (6-4) photoproduct. In contrast, the (6-4) product is not detected at high doses of UVB irradiation in the absence of TBP but is detected in the presence of TBP, although the cis-syn product predominates. When the products of UVB irradiation were subsequently exposed to a high dose of UVC irradiation in the presence of TBP, the (6-4) photoproduct again becomes nearly the exclusive photoproduct, indicating that the cis-syn dimer is being reversed to TT by UVC light. Both cis-syn and (6-4) photoproducts are formed in approximately equal amounts upon irradiation with small doses of UVC in the presence of TBP, but the fraction of (6-4) photoproduct increases with dose. Through the use of a TATA box containing a site-specifically deuterated thymine, it was found that (6-4) photoproducts formed most selectively at the second and third positions of the T(4) tract upon either UVB or UVC irradiation in the presence of TBP. By using the same substrate, it was found that UVC-induced TA formation was inhibited by TBP binding and that TA formation was greatest at the 5' end of the TATA sequence.  相似文献   

5.
The induction of apoptosis in keratinocytes by ultraviolet (UV)-irradiation is considered to be a protective function against skin cancer. UV-induced DNA damage is a crucial event in UVB- and UVC-mediated apoptosis. However, the differences between the UVB- and UVC-induced apoptotic pathways remain unclear. Here we examine the differential mechanisms by which UVB and UVC irradiations induce keratinocyte apoptosis using human keratinocyte HaCaT cells. Differences in the production of (6-4)photoproducts ((6-4)PPs) and cyclobutane pyrimidine dimers (CPDs) were measured following irradiation with UVB and UVC at doses causing the same extent of apoptotic cell death. In addition, main apoptotic features, such as caspase activation and its regulation, were compared between UVB- and UVC-induced apoptosis. Exposures of 500 J/m2 UVB and 100 J/m2 UVC resulted in apoptosis to almost the same extent. At these apoptotic doses, the amounts of both (6-4)PPs and CPDs were significantly larger in the case of UVC irradiation than UVB irradiation; in parallel, the release of cytochrome c and Smac/DIABLO and the activation of caspases-9 following UVC irradiation were greater than after UVB irradiation. Importantly, caspase-8 activation occurred only in UVB-irradiated cells. Furthermore, the activation of caspase-8 was not inhibited by caspases-9 and -3 specific tetrapeptide inhibitors, indicating that the caspase-8 cleavage is not due to feedback from activation of caspases-9 and -3. Thus, these results clearly suggest that the reason apoptosis is induced to the same extent by UVB irradiation as by UVC irradiation, despite the lower production of photoproducts in DNA by UVB irradiation, is attributable to the additional activation of the caspase-8 pathway. Thus, UVB irradiation induces apoptosis through both mitochondrial (intrinsic) and caspase-8 activation (extrinsic) pathways, while UVC induces apoptosis only via the intrinsic pathway.  相似文献   

6.
EcoRII DNA methyltransferase (M.EcoRII) recognizes the 5' em leader CC*T/AGG em leader 3' DNA sequence and catalyzes the transfer of the methyl group from S-adenosyl-l-methionine to the C5 position of the inner cytosine residue (C*). Here, we study the mechanism of inhibition of M.EcoRII by DNA containing 2-pyrimidinone, a cytosine analogue lacking an NH(2) group at the C4 position of the pyrimidine ring. Also, DNA containing 2-pyrimidinone was used for probing contacts of M.EcoRII with functional groups of pyrimidine bases of the recognition sequence. 2-Pyrimidinone was incorporated into the 5' em leader CCT/AGG em leader 3' sequence replacing the target and nontarget cytosine and central thymine residues. Study of the DNA stability using thermal denaturation of 2-pyrimidinone containing duplexes pointed to the influence of the bases adjacent to 2-pyrimidinone and to a greater destabilizing influence of 2-pyrimidinone substitution for thymine than that for cytosine. Binding of M.EcoRII to 2-pyrimidinone containing DNA and methylation of these DNA demonstrate that the amino group of the outer cytosine in the EcoRII recognition sequence is not involved in the DNA-M.EcoRII interaction. It is probable that there are contacts between the functional groups of the central thymine exposed in the major groove and M.EcoRII. 2-Pyrimidinone replacing the target cytosine in the EcoRII recognition sequence forms covalent adducts with M.EcoRII. In the absence of the cofactor S-adenosyl-l-methionine, proton transfer to the C5 position of 2-pyrimidinone occurs and in the presence of S-adenosyl-l-methionine, methyl transfer to the C5 position of 2-pyrimidinone occurs.  相似文献   

7.
The secondary structure of the alternating polydeoxynucleotide sequence poly[d(C-T)] was studied as a function of pH by ultraviolet absorbance and circular dichroism spectroscopy and by the analysis of UV-induced photoproducts. As the pH was lowered, poly[d(C-T)] underwent a conformational transition that was characterized by changes in the long-wavelength region (280-320 nm) of the CD spectrum. These changes have previously been interpreted as evidence for the formation of a core of stacked, protonated C X C+ base pairs in a double-helical complex of poly[d(C-T)], with the thymidyl residues being looped out into the solvent [Gray, D. M., Vaughan, M., Ratliff, R. L., & Hayes, F. N. (1980) Nucleic Acids Res. 8, 3695-3707]. In the present work, poly[d(C-T)] was labeled with [U-14C]cytosine and [methyl-3H]thymine and irradiated at pH values both above and below the conformational transition point (monitored by CD spectroscopy). The distribution of radioactivity in uracil means value of uracil dimers, uracil means value of thymine dimers (the deamination products of cytosine means value of cytosine and cytosine means value of thymine dimers, respectively), and thymine-means value of thymine dimers was then determined. As the pH was decreased, we found an increase in the yield of uracil means value of uracil dimers and a decrease in the yield of uracil means value of thymine dimers, which occurred concomitantly with the change in the CD spectrum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have analyzed the DNA sequence changes in a total of 409 ultraviolet light-induced mutations in the lacI gene of Escherichia coli: 227 in a Uvr+ and 182 in a UvrB- strain. Both differences and similarities were observed. In both strains the mutations were predominantly (60 to 75%) base substitutions, followed by smaller contributions of single-base frameshifts, deletions and frameshift hotspot mutations. The base substitutions proved largely similar in the two strains but differences were observed among the single-base frameshifts, the deletions and the hotspot mutations. Among the base substitutions, both transitions (72.5%) and transversions (27.5%) were observed. The largest single group was G.C----A.T (60% of all base substitutions). The sites where G.C----A.T changes occurred were strongly correlated (97.5%) with sequences of adjacent pyrimidines, indicating mutation targeted ultraviolet photoproducts. Comparable amounts of mutation occurred at cytosine/cytosine and (mixed) cytosine/thymine sites. From an analysis of the prevalence of mutation at either the 5' or 3' side of a dipyrimidine, we conclude that both cyclobutane dimers and (6-4) lesions may contribute to mutation. Despite the general similarity of the base-substitution spectra between the wild-type and excision-defective strains, a number of sites were uniquely mutable in the UvrB- strain. Analysis of their surrounding DNA sequences suggested that, in addition to damage directly at the site of mutation, the potential for nearby opposite-strand damage may be important in determining the mutability of a site. The ultraviolet light-induced frameshift mutations were largely single-base losses. Inspection of the DNA sequences at which the frameshifts occurred suggested that they resulted from targeted mutagenesis, probably at cyclobutane pyrimidine dimers. The prevalence of frameshift mutations at homodimers (TT or CC) suggests that their formation involves local misalignment (slippage) and that base-pairing properties are partially retained in cyclobutane dimers. While the frameshift mutations in the Uvr+ strain were distributed over many different sites, more than half in the UvrB- strain were concentrated at a single site. Ultraviolet light-induced deletions as well as frameshift hotspot mutations (+/- TGGC at positions 620 to 632) are considered to be examples of untargeted or semitargeted mutagenesis. Hotspot mutations in the Uvr+ strain showed an increased contribution by (-)TGGC relative to (+)TGGC, indicating that ultraviolet light may specifically promote the loss of the four bases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
S T Kim  A Sancar 《Biochemistry》1991,30(35):8623-8630
Photolyases reverse the effects of UV light on cells by converting cyclobutane dipyrimidine photoproducts (pyrimidine dimers, Pyr mean value of Pyr) into pyrimidine monomers in a light-dependent reaction. Previous work has suggested that, based on substrate preference, there are two classes of photolyase: DNA photolyase as exemplified by the Escherichia coli enzyme, and RNA photolyases found in plants such as Nicotiana tabacum and Phaseolus vulgaris. In experiments aimed at identifying substrate determinants, including the pentose ring, for binding and catalysis by E. coli DNA photolyase we tested several Pyr mean value of Pyr. We found that the enzyme has relative affinities for photodimers of T mean value of T greater than or equal to U mean value of T greater than U mean value of U much greater than C mean value of C and that the E-FADH2 form of the enzyme repairs these dimers at 366 nm with absolute quantum yields of 0.9 (T mean value of T), 0.8 (U mean value of T), 0.6 (U mean value of U), and 0.05 (C mean value of C). The enzyme also repairs an isolated thymine dimer and the synthetic substrate, 1,1'-trimethylene-bis (thymine) cyclobutane dimer. Unexpectedly, we found that this enzyme, previously thought to be specific for DNA, repairs uracil cyclobutane dimers in poly(rU). The affinity of photolyase for a uracil dimer in RNA is about 10(4)-fold lower than that for a U mean value of U in DNA; however, once bound, the enzyme repairs the photodimer with the same quantum yield whether the dimer is in ribonucleoside or deoxyribonucleoside form.  相似文献   

10.
In order to detect possible m5C photoproducts, highly purified rat liver DNA-cytosine methyltransferase was used to specifically generate m5C with a radioactive methyl group. When these DNAs were subjected to a large dose (10 kJ/m2) of 254 nm or 302 nm ultraviolet light (UVB) to enhance the yield, two labeled photoproducts were detected and isolated by reverse phase HPLC after formic acid hydrolysis. Further studies using acetone as a triplet state sensitizer and UVB irradiation suggested that photoproduct II was activated via a triplet state while the more polar photoproduct I was not. Photoreversion of the purified photoproducts with 10 kJ/m2 254 nm light demonstrated the following reactions: Photoproduct I regenerated m5C, while photoproduct II is split and regenerated m5C and photoproduct I. These results suggest that photoproduct I is monomeric while photoproduct II dimeric, and from the latter's elution position possibly a cyclobutyl type dimer arising from a reaction with an adjacent cytosine. Using d[TTG] and d[Cm5CG] as models of typical sequences, irradiation with 10 kJ/m2 254 nm or 302 nm, respectively, gave rise to a small component having altered mobility in sequencing gels. The altered mobility trinucleotides were resistant to degradation by PI and micrococcal nucleases as expected from photodimerization of the pyrimidine bases. Furthermore, oligonucleotide substrates containing m5C were synthesized and shown to be susceptible to T4 endonuclease v action at locations consistent with d[Cm5C] photodimer formation when irradiated in the UVB range.  相似文献   

11.
UVB radiation-induced formation of dimeric photoproducts at bipyrimidine sites within DNA has been unambiguously associated with the lethal and mutagenic properties of sunlight. The main lesions include the cyclobutane pyrimidine dimers and the pyrimidine (6-4) pyrimidone adducts. The latter compounds have been shown in model systems to be converted into their Dewar valence isomers upon exposure to UVB light. A new direct assay, based on the use of liquid chromatography coupled to tandem mass spectrometry, is now available to simultaneously detect each of the thymine photoproducts. It was applied to the determination of the yields of formation of the thymine lesions within both isolated and cellular DNA exposed to either UVC or UVB radiation. The cis-syn cyclobutane thymine dimer was found to be the major photoproduct within cellular DNA, whereas the related (6-4) adduct was produced in an approximately 8-fold lower yield. Interestingly, the corresponding Dewar valence isomer could not be detected upon exposure of human cells to biologically relevant doses of UVB radiation.  相似文献   

12.
Acetone-photosensitized UV irradiation of three thymine oligomers, d(TpT), d(TpTpT), and d(TpTpTpT), forms predominantly cis-syn cyclobutyl photodimers. C-18 reverse-phase high-performance liquid chromatography is used to purify the following positional isomers: d(TpT[p]T), d(T[p]TpT), d(TpTpT[p]T), d(TpT[p]TpT), d(T[p]TpTpT), and d(T[p]TpT[p]T), where T[p]T represents the cis-syn photodimer. Conformational properties of the cis-syn dimers and adjacent thymine nucleotides have been investigated in solution by using 1H, 13C, and 31P NMR spectroscopy. These studies show that (1) the photodimer conformation in longer oligothymidylates is similar to that in the dinucleoside monophosphate and (2) the cis-syn dimer induces alterations to a greater degree on the 5' side than on the 3' side of the photodimer. Specifically, the photodimer distorts the exocyclic bonds epsilon(C3'-O3') in Tp- and gamma(C5'-C4') in -pT[p]- on the 5' side and slightly alters the furanose equilibrium of the -pT nucleotide on the 3' side of the dimer.  相似文献   

13.
We report detection and quantification of ultraviolet (UV) damage in DNA at a single molecule level by atomic force microscopy (AFM). By combining the supercoiled plasmid relaxation assay with AFM imaging, we find that high doses of medium wave ultraviolet (UVB) and short wave ultraviolet (UVC) light not only produce cyclobutane pyrimidine dimers (CPDs) as reported but also cause significant DNA degradation. Specifically, 12.5 kJ/m(2) of UVC and 165 kJ/m(2) of UVB directly relax 95% and 78% of pUC18 supercoiled plasmids, respectively. We also use a novel combination of the supercoiled plasmid assay with T4 Endonuclease V treatment of irradiated plasmids and AFM imaging of their relaxation to detect damage caused by low UVB doses, which on average produced approximately 0.5 CPD per single plasmid. We find that at very low UVB doses, the relationship between the number of CPDs and UVB dose is almost linear, with 4.4 CPDs produced per Mbp per J/m(2) of UVB radiation. We verified these AFM results by agarose gel electrophoresis separation of UV-irradiated and T4 Endonuclease V treated plasmids. Our AFM and gel electrophoresis results are consistent with the previous result obtained using other traditional DNA damage detection methods. We also show that damage detection assay sensitivity increases with plasmid size. In addition, we used photolyase to mark the sites of UV lesions in supercoiled plasmids for detection and quantification by AFM, and these results were found to be consistent with the results obtained by the plasmid relaxation assay. Our results suggest that AFM can supplement traditional methods for high resolution measurements of UV damage to DNA.  相似文献   

14.
A number of variants of Cloudman S91 mouse melanoma cells that differ with respect to the amount of pigment produced are available for study. In this report, we compare the photobiological responses of S91/amel, which contains about 1 pg of melanin per cell, with S91/I3, which contains about 3 pg/cell. Earlier studies had shown that UVC induced more oxidative damage (in the form of thymine glycols) in cell line S91/I3 than in S91/amel and that cell line S91/amel was more resistant to killing by UVC than S91/I3. The present study finds that S91/amel cells are also relatively resistant to killing by near monochromatic UVB from a Philips TLO1 fluorescent lamp and by near monochromatic UVA from a Philips HPW125 lamp. However when the cells are irradiated with a Westinghouse FS20 polychromatic lamp, the S91/I3 cells are more resistant than the S91/amel cells. These findings cannot be explained on the basis of pigment induction because in S91/I3 this is about the same after UVB and FS20, although the maximum is reached earlier after UVB. Nor can our findings be explained on the basis of pyrimidine dimer formation, which is comparable in the two cell lines regardless of the type of irradiation. These results suggest that, with a pigment such as melanin, which absorbs light across the visible and ultraviolet ranges of the spectrum, cellular responses to monochromatic light do not necessarily predict responses to polychromatic mixtures.  相似文献   

15.
Raman spectroscopy was used for the first time to detect the effect of independent UVA (ultraviolet-A: 320-400nm) and UVB (ultraviolet-B: 280-320 nm) irradiation on the calf thymus DNA in aqueous solution. After both UVA and UVB irradiation for 1h or 3h, the damage to the conformation of DNA was moderate, but the reduction of the B-form DNA component was obvious. Both UVA and UVB caused significant damage to the deoxyribose moiety and bases, among which the pyrimidine base pairs were more seriously affected. There appeared to be preferential damaging sites on DNA molecules caused by UVA and UVB irradiation. UVA irradiation caused more damage to the deoxyribose than UVB irradiation, while UVB irradiation caused more significant damage to the pyrimidine moiety than UVA irradiation. After UVB irradiation for 3h, unstacking of the AT base pairs and the cytosine ring took place, severe damage to the thymine moiety occurred, and some base pairs were modified. Moreover, with either UVA or UVB irradiation for 3h,the photoreactivation of DNA occurred. The damage to the DNA caused by UVB was immediate, while the damage caused by UVA was proportional to the irradiation duration. The experimental results partly indicate the formation of some cyclobutane pyrimidine dimers and (6-4) photoproducts.  相似文献   

16.
UVB (280-320 nm) and UVC (200-280 nm) irradiation generate predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase eta (Pol eta) dependent process. Pol eta is a DNA damage-tolerant and error-prone DNA polymerase encoded by the POLH (XPV) gene in humans. Another member of the Y family of error-prone DNA polymerases is POLI encoding DNA polymerase iota (Pol iota). In order to clarify the specific role of Pol iota in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells, similar as we have previously done for Pol eta. Synthetic RNA duplexes were used to efficiently inhibit Pol iota expression in 293 T cells. The supF shuttle vector was irradiated with 254 nm UVC and replicated in 293 T cells in presence of anti-Pol iota siRNA. Surprisingly, there was a consistent reduction of recovered plasmid from cells with Pol iota knockdown and this was independent of UV irradiation of the plasmid. The supF mutant frequency was unchanged in the siRNA knockdown cells relative to control cells confirming that Pol iota does not play an important role in UV mutagenesis. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Neither the type of mutations nor their distribution along the supF gene were significantly different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. These results show that Pol iota has no significant role in UV lesion bypass and mutagenesis in vivo and provides some initial data suggesting that this polymerase may be involved in replication of extrachromosomal DNA.  相似文献   

17.
The free energy of the stacking-unstacking process of deoxyribodinucleoside monophosphates in aqueous solution has been investigated by potential of mean force calculations along a reaction coordinate, defined by the distance between the glycosidic nitrogen atoms of the bases. The stacking-unstacking process of a ribodinucleoside monophosphate was observed to be well characterized by this coordinate, which has the advantage that it allows for a dynamical backbone and flexible bases. All 16 naturally occurring DNA dimers composed of the adenine, cytosine, guanine, or thymine bases in both the 5' and the 3' positions were studied. From the free-energy profiles we observed the deepest minima for the stacked states of the purine-purine dimers, but good stacking was also observed for the purine-pyrimidine and pyrimidine-purine dimers. Substantial stacking ability was found for the dimers composed of a thymine base and a purine base and also for the deoxythymidylyl-3',5'-deoxythymidine dimer. Very poor stacking was observed for the dCpdC dimer. Conformational properties and solvent accessibility are discussed for the stacked and unstacked dimers. The potential of mean force profiles of the stacking-unstacking process for the DNA dimers are compared with the RNA dimers.  相似文献   

18.
Primary chick embryo cultures were able to photoreactivate ultraviolet-treated pseudorabies virus. Upon exposure to fluorescent light, infected or uninfected chick cells eliminated thymine dimers induced in their deoxyribonucleic acid by ultraviolet irradiation. In contrast, rabbit kidney cells did not photoreactivate the virus or eliminate thymine dimers. Thus, the capacity for photoreactivation appeared to be determined by the ability of the cell to eliminate thymine dimers.  相似文献   

19.
The T4 ultraviolet endonuclease was previously shown to produce strand incisions (nicks) in ultraviolet-irradiated DNA on the 5' side of thymine dimers. The present studies demonstrate that the purified endonuclease creates 3'-OH and 5'-P termini at the sites of nicking. Photoreactivation of ultraviolet-sensitive sites, thereby demonstrating directly endonucleause has a molecular weight of approximately 18,000 and attacks ultraviolet-irradiated single-stranded Escherichia coli and M-13 DNA.  相似文献   

20.
There is growing evidence to suggest that solar radiation-induced, oxidative DNA damage may play an important role in skin carcinogenesis. Numerous methods have been developed to sensitively quantitate 8-oxo-2′deoxyguanosine (8-oxodG), a recognised biomarker of oxidative DNA damage. Immunoassays may represent a means by which the limitations of many techniques, principally derived from DNA extraction and sample workup, may be overcome. We report the evaluation of probes to thymine dimers and oxidative damage in UV-irradiated cells and the DNA derived therefrom. Thymine dimers were most readily recognised, irrespective of whether in situ in cells or in extracted DNA. However, using antibody-based detection the more subtle oxidative modifications required extraction and, in the case of 8-oxodG, denaturation of the DNA prior to successful recognition. In contrast, a recently described novel probe for 8-oxodG detection showed strong recognition in cells, although appearing unsuitable for use with extracted DNA. The probes were subsequently applied to examine the relative induction of lesions in cells following UV irradiation. Guanine-glyoxal lesions predominated over thymine dimers subsequent to UVB irradiation, whereas whilst oxidative lesions increased significantly following UVA irradiation, no induction of thymine dimers was seen. These data support the emerging importance of oxidative DNA damage in UV-induced carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号