首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thermostable polymers cast as thin, porous coatings or membranes may be useful for concentrating and stabilizing hyperthermophilic microorganisms as biocatalysts. Hydrogel matricies can be unstable above 65°C. Therefore a 55-m thick, two layer (cell coat + polymer top coat) bimodal, adhesive latex coating of partially coalesced polystyrene particles was investigated at 80°C using Thermotoga maritima as a model hyperthermophile. Coating permeability (pore structure) was critical for maintaining T. maritima viability. The permeability of bimodal coatings generated from 0.8 v/v of a suspension of non-film-forming 800 nm polystyrene particles with high glass transition temperature (Tg= 94°C, 26.9% total solids) blended with 0.2 v/v of a suspension of film-forming 158 nm polyacrylate/styrene particles (Tg –5°C, 40.9% total solids) with 0.3 g sucrose/g latex was measured in a KNO3 diffusion cell. Diffusivity ratio remained above 0.04 (Deff/D) when incubated at 80°C in artificial seawater (ASW) for 5 days. KNO3 permeability was corroborated by cryogenic-SEM images of the pore structure. In contrast, the permeability of a mono-dispersed acrylate/vinyl acetate latex Rovace SF091 (Tg~10°C) rapidly decreased and became impermeable after 2 days incubation in ASW at 80°C. Thermotoga maritima were entrapped in these coatings at a cell density of 49 g cell wet weight/liter of coating volume, 25-fold higher than the density in liquid culture. Viable T. maritima were released from single-layer coatings at 80°C but accurate measurement of the percentage of viable entrapped cells by plate counting was not successful. Metabolic activity could be measured in bilayer coatings by utilization of glucose and maltose, which was identical for latex-entrapped and suspended cells. Starch was hydrolyzed for 200 h by latex-entrapped cells due to the slow diffusion of starch through the polymer top coat compared to only 24 h by suspended T. maritima. The observed reactivity and stability of these coatings was surprising since cryo-SEM images suggested that the smaller low Tg polyacrylate/styrene particles preferentially bound to the T. maritima toga-sheath during coat formation. This model system may be useful for concentrating, entrapment and stabilization of metabolically active hyperthermophiles at 80°C.  相似文献   

3.
To assess the applicability of latex cell coatings as an ‘off‐the‐shelf’ biocatalyst, the effect of osmoprotectants, temperature, humidity and O2 on preservation of H2 production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H2 production. Beyond 2 weeks of storage, sorbitol‐treated coatings lost all H2 production activity, whereas considerable H2 production was still detected in sucrose‐ and trehalose‐stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H2 production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H2 (0–0.1% headspace accumulation), whereas those stored at < 5% humidity retained 27–53% of their H2 production activity after 8 weeks of storage. When stored in argon at < 5% humidity and room temperature, R. palustris coatings retained full H2 production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.  相似文献   

4.
We developed a novel <50-microm thick nano-porous bi-layer latex coating for preserving Gluconobacter oxydans, a strict aerobe, as a whole cell biocatalyst. G. oxydans was entrapped in an acrylate/vinyl acetate co-polymer matrix (T (g) approximately 10 degrees C) and cast into 12.7-mm diameter patch coatings (cellcoat) containing approximately 10(9) CFU covered by a nano-porous topcoat. The oxidation of D-sorbitol to L-sorbose was used to investigate the coating catalytic properties. Intrinsic kinetics was studied in microbioreactors using a pH 6.0 D-sorbitol, phosphate, pyruvate (SPP) non-growth medium at 30 degrees C, and the Michaelis-Menten constants determined. By using a diffusion cell, cellcoat and topcoat diffusivities, optimized by arresting polymer particle coalescence by glycerol and/or sucrose addition, were determined. Cryo-FESEM images revealed a two-layer structure with G. oxydans surrounded by <40-nm pores. Viable cell density, cell leakage, and oxidation kinetics in SPP medium for >150 h were investigated. Even though the coatings were optimized for permeability, approximately 50% of G. oxydans viability was lost during cellcoat drying and further reduction was observed as the topcoat was added. High reaction rates per unit volume of coating (80-100 g/L x h) were observed which agreed with predictions of a diffusion-reaction model using parameters estimated by independent experiments. Cellcoat effectiveness factors of 0.22-0.49 were observed which are 20-fold greater than any previously reported for this G. oxydans oxidation. These nano-structured coatings and the possibility of improving their ability to preserve G. oxydans viability may be useful for engineering highly reactive adhesive coatings for multi-phase micro-channel and membrane bioreactors to dramatically increase the intensity of whole-cell oxidations.  相似文献   

5.
The effect of increasing trehalose concentrations on the kinetics of the plasma membrane H+-ATPase from Kluyveromyces lactis was studied at different temperatures. At 20 degrees C, increasing concentrations of trehalose (0.2 to 0.8 M) decreased V(max) and increased S(0.5) (substrate concentration when initial velocity equals 0.5 V(max)), mainly at high trehalose concentrations (0.6 to 0.8 M). The quotient V(max)/S(0.5) decreased from 5.76 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the absence of trehalose to 1.63 micromol of ATP mg of protein(-1) x min(-1) x mM(-1) in the presence of 0.8 M trehalose. The decrease in V(max) was linearly dependent on solution viscosity (eta), suggesting that inhibition was due to hindering of protein domain diffusional motion during catalysis and in accordance with Kramer's theory for reactions in solution. In this regard, two other viscosity-increasing agents, sucrose and glycerol, behaved similarly, exhibiting the same viscosity-enzyme inhibition correlation predicted. In the absence of trehalose, increasing the temperature up to 40 degrees C resulted in an exponential increase in V(max) and a decrease in enzyme cooperativity (n), while S(0.5) was not modified. As temperature increased, the effect of trehalose on V(max) decreased to become negligible at 40 degrees C, in good correlation with the temperature-mediated decrease in viscosity. The trehalose-mediated increase in S(0.5) was similar at all temperatures tested, and thus, trehalose effects on V(max)/S(0.5) were always observed. Trehalose increased the activation energy for ATP hydrolysis. Trehalose-mediated inhibition of enzymes may explain why yeast rapidly hydrolyzes trehalose when exiting heat shock.  相似文献   

6.
正交法优化嗜酸氧化亚铁硫杆菌冷冻干燥保护剂   总被引:2,自引:0,他引:2       下载免费PDF全文
利用正交实验方法,以甘油、海藻糖、蔗糖和牛血清蛋白为因素,对嗜酸氧化亚铁硫杆菌(Acididfiobacillus ferrooxidans,A.ferrooxidans)冷冻干燥保护剂的最优化配比进行了研究。直观分析、因素指标分析和方差分析的结果表明:由甘油、海藻糖、蔗糖和牛血清蛋白组成的冷冻干燥保护剂中,对存活率影响的主次顺序依次为:甘油〉海藻糖〉牛血清蛋白〉蔗糖。保护剂的最优化组合为甘油5%、海藻糖15%、蔗糖18%、牛血清蛋白10%。经过验证,该组合的保护剂可使冷冻干燥嗜酸氧化亚铁硫杆菌的存活率达到94%。  相似文献   

7.
The ability to cryopreserve a stage of Anopheles mosquitoes would facilitate the development of strains incapable of transmitting malaria. Cryopreservation requires that the freezable water in cell systems be removed or rendered incapable of undergoing ice formation. The present study was concerned with the rate at which water is removed from lst instar larvae of Anopheles gambiae by air-drying, with the extent of dehydration that the larvae will tolerate, and with the effect of trehalose and sucrose on both drying kinetics and survival. Eighty-one percent of the larvae are water. Air-drying removes 90% of that water in approximately 20 min. Survivals after partial dehydration are highest if the larvae are rehydrated in 1/2x isotonic saline (0.13 osm); they are poorest if rehydrated in water or 0.13 osm sucrose. In the former, about 34% survive the removal of half the water, but next to none survive the loss of >70% initial water. Prior exposure to 0.2 M trehalose for as little as 1 min slows the drying rate and increases the tolerance of the larvae to dehydration. With 30-min exposure, 88% survive the loss of 50% of their water and 63% survive the loss of 75%. Protection is abolished with 0.4 M trehalose. The results are similar with sucrose. It is substantially reduced if sugar-exposed larvae are briefly washed with water prior to drying. The protection appears not to be related to the decreased drying rate. Rather it appears related, by an unknown mechanism, to the presence of sugar on the outer surface of the larvae.  相似文献   

8.
Two hypotheses on the synthesis of the protectants glycerol and trehalose of the infective juveniles (IJs) of Steinernema carpocapsae during osmotic dehydration were tested and utilised to evaluate the function and importance of glycerol on survival of the nematodes during osmotic dehydration. This was achieved by comparing the changes in survival, morphology, behaviour and levels of glycerol, trehalose and permeated compounds of the IJs dehydrated in seven hypertonic solutions at two temperature regimes: (1) 5 °C for 15 days; and (2) 23 °C for 1 day followed by 5 °C for another 14 days. The results substantiate both hypotheses tested: (1) the permeability of the IJs to various compounds, such as sucrose or ethylene glycol, when they are dehydrated in hypertonic solutions of these compounds; and (2) suppression of the synthesis of protectant glycerol but not trehalose when IJs are dehydrated at low temperature. The results also showed that: (1) although trehalose was the preferred dehydration protectant, glycerol played an important role in rapidly balancing the osmotic pressure when IJs were exposed in hypertonic solutions; (2) the presence of glycerol was essential for the IJs to survive and function properly even under moderate osmotic dehydration, especially when IJs were dehydrated in salt solutions; and (3) some exogenous compounds permeated into IJs during osmotic dehydration such as ethylene glycol, may function in the same way as glycerol and significantly improve the survival and function of the IJs. The results indicate that each of the protectants glycerol and trehalose has a specific function and neither is replaceable by the other.  相似文献   

9.
This study was conducted to investigate the ability of cryoprotective chemicals to induce phenotypic cryoadaptation in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027T. Tolerance to negative temperature stress (freezing at -20 degrees C and thawing at 37 degrees C) was induced by pretreatment with Me(2)SO, glycerol, lactose, sucrose, and trehalose. Interestingly, Me(2)SO has a significantly greater cryoprotective effect than glycerol. Furthermore, lactose, sucrose, and trehalose, often referred to as osmotica, were shown to have greater cryoadaptive than cryoprotective properties. These results suggest that bacteria such as L. delbrueckii ssp. bulgaricus could be phenotypically adapted to freezing and thawing by an osmotic stress applied prior to freeze-thaw stress.  相似文献   

10.
When liposomes are subjected to dehydration or freeze-thawing, vesicle fusion and/or leakage of vesicle contents can occur. The disaccharide, trehalose and the cryoprotectant, glycerol, are known to protect vesicle integrity during dehydration and freezing respectively. Here we examine their protective abilities as a function of vesicle size and lipid composition. It is shown that fatty acyl composition, cholesterol content and, with the exception of phosphatidylglycerol, acidic lipid content do not significantly alter the retention of aqueous contents by vesicles dehydrated and rehydrated in the presence of trehalose. The susceptibility to leakage induced by both dehydration and freezing is, however, critically dependent upon vesicle size with the smallest systems (70-100 nm diameter) being most stable. The mechanism whereby trehalose protects against vesicle fusion and leakage is also discussed.  相似文献   

11.
Upon cold and drought stress, sucrose and trehalose protect membrane structures from fusion and leakage. Similarly, these sugars protect membrane proteins from inactivation during dehydration. We studied the interactions between sugars and phospholipid membranes in giant unilamellar vesicles with the fluorescent lipid analog 3,3′-dioctadecyloxacarbocyanine perchlorate incorporated. Using fluorescence correlation spectroscopy, it was found that sucrose decreased the lateral mobility of phospholipids in the fully rehydrated, liquid crystalline membrane more than other sugars did, including trehalose. To describe the nature of the difference in the interaction of phospholipids with sucrose and trehalose, atomistic molecular dynamics studies were performed. Simulations up to 100 ns showed that sucrose interacted with more phospholipid headgroups simultaneously than trehalose, resulting in a larger decrease of the lateral mobility. Using coarse-grained molecular dynamics, we show that this increase in interactions can lead to a relatively large decrease in lateral phospholipid mobility.  相似文献   

12.
Glycerol, a linear triol, is a sweet tastant for mammals but it has not previously been recognized to stimulate the sense of taste in insects. Here we show by electrophysiological experimentation that it effectively stimulates the labellar sugar receptor cell of Drosophila. We also show that in accord with the electrophysiological observations, the behavioral feeding response to glycerol is dose dependent. 3-Amino-1,2-propanediol inhibited the response of the sugar receptor cell to glycerol, specifically and competitively, while it had almost no effect on responses to sucrose, D-glucose, D-fructose and trehalose. In the null Drosophila mutant for the trehalose receptor (DeltaEP19), the response to glycerol showed no change, in sharp contrast with a characteristic drastic decrease in the response to trehalose. The glycerol concentration-response curves for I-type and L-type labellar hairs were statistically indistinguishable, while those for sucrose, D-glucose, D-fructose and trehalose were clearly different. These all indicate the presence of a specific receptor site for glycerol. The glycerol site was characterized by comparing the effectiveness of various derivatives of glycerol. Based on this structure-taste relationship of glycerol, a model is proposed for the glycerol site including three subsites and two steric barriers, which cannot accommodate carbon-ring containing sugars such as D-glucose.  相似文献   

13.
Devitrification has been determined to be one of the major causes of cell death in cryopreservation by vitrification method. Reliable quantification of the nucleation and growth of ice crystals of devitrification is of great importance for the optimization of the vitrification solutions. In the present study, cryomicroscopy was used to investigate the nucleation and growth of ice crystals in concentrated glycerol aqueous solution (60 wt%) in the presence of sucrose, trehalose, maltose and lactose. Results showed that sucrose rather than trehalose seems to be the most effective one to inhibit the nucleation and ice growth, despite the excellent inhibitory ability of trehalose on ice growth that has been confirmed in many researches. Hence, for ice inhibition, sucrose was a more effective disaccharide additive to suppress nucleation and growth of ice crystals that occurred during devitrification in concentrated glycerol solutions.  相似文献   

14.
Latex biocatalytic coatings containing approximately 50% by volume of microorganisms stabilize, concentrate and preserve cell viability on surfaces at ambient temperature. Coatings can be formed on a variety of surfaces, delaminated to generate stand-alone membranes or formulated as reactive inks for piezoelectric deposition of viable microbes. As the latex emulsion dries, cell preservation by partial desiccation occurs simultaneously with the formation of pores and adhesion to the substrate. The result is living cells permanently entrapped, surrounded by nanopores generated by partially coalesced polymer particles. Nanoporosity is essential for preserving microbial viability and coating reactivity. Cryo-SEM methods have been developed to visualize hydrated coating microstructure, confocal microscopy and dispersible coating methods have been developed to quantify the activity of the entrapped cells, and FTIR methods are being developed to determine the structure of vitrified biomolecules within and surrounding the cells in dry coatings. Coating microstructure, stability and reactivity are investigated using small patch or strip coatings where bacteria are concentrated 102- to 103-fold in 5-75 microm thick layers with pores formed by carbohydrate porogens. The carbohydrate porogens also function as osmoprotectants and are postulated to preserve microbial viability by formation of glasses inside the microbes during coat drying; however, the molecular mechanism of cell preservation by latex coatings is not known. Emerging applications include coatings for multistep oxidations, photoreactive coatings, stabilization of hyperthermophiles, environmental biosensors, microbial fuel cells, as reaction zones in microfluidic devices, or as very high intensity (>100 g.L-1 coating volume.h-1) industrial or environmental biocatalysts. We anticipate expanded use of nanoporous adhesive coatings for prokaryotic and eukaryotic cell preservation at ambient temperature and the design of highly reactive "living" paints and inks.  相似文献   

15.
Nonuniform light distribution is a fundamental limitation to biological hydrogen production by phototrophic bacteria. Numerous light distribution designs and culture conditions have been developed to reduce self-shading and nonuniform reactivity within bioreactors. In this study, highly concentrated (2.0 x 108 CFU/muL formulation) nongrowing Rhodopseudomonas palustris CGA009 were immobilized in thin, nanoporous, latex coatings. The coatings were used to study hydrogen production in an argon atmosphere as a function of coating composition, thickness, and light intensity. These coatings can be generated aerobically or anaerobically and are more reactive than an equivalent number of suspended or settled cells. Rhodopseudomonas palustris latex coatings remained active after hydrated storage for greater than 3 months in the dark and over 1 year when stored at -80 degrees C. The initial hydrogen production rate of the microphotobioreactors containing 6.25 cm2, 58.4 mum thick Rps. palustris latex coatings illuminated by 34.1 PAR mumol photons m-2 s-1 was 6.3 mmol H2 m-2 h-1 and had a final yield of 0.55 mol H2 m-2 in 120 h. A dispersible latex blend has been developed for direct comparison of the specific activity of settled, suspended, and immobilized Rps. palustris.  相似文献   

16.
Acid trehalase (EC 3.2.1.28) was isolated from muscle of Ascaris suum by fractionating with ammonium sulfate, acetone and column chromatography on DEAE-cellulose and phenyl sepharose CL-4B. The purified homogeneous preparation of native acid trehalase exhibited a molecular mass of 76 kDa and of 38 kDa on SDS-PAGE. The enzyme has the optimum pH 4.9, pI 4.3, Km of 6.6 mM and Vmax=34.5 nM min(-1) x mg(-1). Besides trehalose, it hydrolyses sucrose, isomaltose and maltose and, to a lesser degree melezitose, and it does not act on cellobiose and lactose. Acid trehalase was activated by MgCl2, KNO3, NaCl, CaCl2, CH2ICOOH and p-chloromercuribenzoate and inhibited by EDTA, ZnSO4 and FeCl3.  相似文献   

17.
AIM: This work determines the efficiency of trehalose on the preservation by heat or osmotic drying of a strain of Lactobacillus delbrueckii ssp. bulgaricus. Cell recovery at different trehalose concentrations during drying correlated with the surface properties and osmotic response of cells after rehydration. METHODS AND RESULTS: Bacteria were dried in the presence of glycerol, trehalose, sucrose at 70 degrees C and at 20 degrees C. Trehalose attenuates the loss of viability at 0.25 m. At this concentration, the osmotic response and zeta potential of the bacteria were comparable with the nondried ones. CONCLUSIONS: Trehalose diminishes significantly the damage produced by dehydration both when the bacteria are dried by heating or subjected to osmotic dehydration. This effect appears related to the preservation of the permeability to water and the surface potential of the bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Dehydration occurring during heating or during osmosis appears to have similar effects. As dehydration-induced damage is in correlation with osmotic response recovery and is hindered or buffered by the presence of trehalose, it may be related to water eliminated from biological structures involved in water permeation.  相似文献   

18.
The effect of temperature stress on the cytosol carbohydrate composition of fungi belonging to various systematic groups was investigated. In Mucorales representatives (subkingdom Eomycota, phylum Archemycota, class Zygomycetes), adaptation to hypo- and hyperthermia occurs via the regulation of trehalose synthesis, although inositol is also involved in these processes in Blakeslea trispora. Basidiomycota (subkingdom Neomycota) use two pathways of biochemical adaptation, depending on the cytosol carbohydrate composition. In the absence of sucrose, glycerol and arabitol are involved in the adaptation to hyperthermia; trehalose accumulates under hypothermic conditions (type I of regulation). Type II regulation (revealed in Pleurotus ostreatus) involves sucrose rather than glycerol or arabitol. The data obtained are discussed in terms of fungal systematics and phylogeny.  相似文献   

19.
包被工艺条件对植酸酶热稳定性的影响   总被引:11,自引:0,他引:11  
考察了不同种类的糖、盐及浓度在干热及湿热的情况下对残存酶活的影响,通过正交实验,确定包被工艺优化条件为:以多孔淀粉为载体,采用流化干燥法取得;包被中蔗糖的添加量为40mg/g酶,氯化钠包覆用量为淀粉质量的10%,明胶作外包被,用量为淀粉质量的1.5%,得到包埋颗粒,其包埋率为82.8%,包埋后,水分活度大于0.35时,包被酶在干热的情况下残存酶活比原酶有较大的提高,残存酶活提高8.7%,湿热的情况下,残存酶活提高58.3%,胃蛋白酶对其的损坏作用也明显减小.  相似文献   

20.
The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号