首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the relative importance of two lymphokines, IL-2 and IFN-gamma, in the primary murine MLR. Three separate lines of evidence indicate that IL-2 and not IFN-gamma is the relevant lymphokine for both proliferation and activation of CTL in these cultures. No obligate role for IFN-gamma was found. First, CTL activation in the presence of high dose cyclosporin A was partially reconstituted with IL-2, although no detectable IFN-gamma was produced in such cultures. In addition, IFN-gamma could not reconstitute cyclosporin-inhibited cultures. Second, inclusion of a high concentration of several distinct anti-IFN-gamma antibodies failed to inhibit MLR cultures. Third, CTL activation by stimulator cells inactivated by UV irradiation was reconstituted by IL-2, but not by IFN-gamma. These data do not support an autocrine role of IFN-gamma in CTL activation and confirm the importance of IL-2 in the primary murine MLR.  相似文献   

2.
3.
Regulation of the cytotoxic T lymphocyte response against Qa-1 alloantigens   总被引:2,自引:0,他引:2  
Spleen cells from B6.Tlaa (Qa-1a) mice primed against C57BL/6 (Qa-1b) splenocytes in vivo generate Qa-1-specific CTL when rechallenged with Qa-1b Ag in vitro. The addition of unirradiated Qa-1b splenocytes to these cultures inhibits the generation of Qa-1-specific CTL. By using highly purified cell populations, we demonstrate that the only cell population in resting spleen capable of causing this inhibition is NK1.1+. Although resting CD8 cells lack inhibitory activity, purified CD8 cells precultured with Con A and IL-2 inhibit anti-Qa-1 CTL. This inhibition is specific for the Qa-1b Ag expressed on the inhibitor cells, is not due to cold target competition, and is thus similar to that ascribed to veto cells. Although NK cells from resting spleen inhibit the generation of Qa-1-specific CTL, NK cells precultured in the presence of Con A and IL-2 show an approximate 30-fold increase in veto activity. Thus, NK cells represent the most likely cell population for down-regulating anti-self class I-reactive CTL.  相似文献   

4.
Generation of large granular T lymphocytes in vivo during viral infection   总被引:12,自引:0,他引:12  
Cytolytic lymphocytes were isolated from the spleens of lymphocytic choriomeningitis virus (LCMV)-infected mice and were characterized in regards to function, cell size, antigen phenotype, and cell morphology. Only 2% of the Lyt-2+ cells from uninfected mice were large granular lymphocytes (LGL), whereas 21% of the Lyt-2+ cells isolated 7 days postinfection were LGL. The day 7 Lyt-2+ populations contained all of the LCMV-specific, class I histocompatibility antigen-restricted cytotoxic T lymphocyte (CTL) activity, but no natural killer (NK) cell activity. The NK cell activity was consistently recovered in Lyt-2- populations isolated from both control mice and mice on day 7 postinfection. The LGL isolated on day 7 postinfection were concluded to be predominantly T cells and not NK cells because 1) the proportions of LGL in fractionated cell populations 7 days postinfection correlated with levels of CTL-mediated lysis but not NK cell-mediated lysis, 2) they were recovered in the Lyt-2+ population, and 3) antibody to asialo GM1, known to eliminate NK cell-mediated lysis but not T cell-mediated lysis, dramatically reduced NK cell LGL numbers in vivo on day 3 postinfection but only marginally affected LGL numbers on day 7. Virus-induced inflammation elicited a 50-fold increase in LGL numbers in the peritoneum on day 7 postinfection. The peritoneal exudate LGL were also associated with CTL activity and were resistant to treatment with antibody to asialo GM1. These results indicate that in vivo-generated CTL have the morphology of LGL and that the appearance of cytoplasmic granules correlates with the ability of cells to mediate lysis. To focus on cells being stimulated during infections, activated blast cells were separated from small resting cells by centrifugal elutriation. Coincidental with the peak in overall spleen leukocyte cytotoxic activity, the peaks of blast NK cells and CTL were at days 3 and 7 postinfection respectively. More than 50% of the blast lymphocytes isolated on either day 3 or day 7 postinfection were LGL. The CTL activity in the blast populations on day 7 postinfection was mediated by Lyt-2+ cells, and 37 to 64% of these Lyt-2+ blast cells were LGL. Cytolytic NK cell and CTL LGL could not be distinguished by morphology or by cell densities, because they overlapped in low density Percoll gradient fractions. Since this technique has been used to enrich for LGL, these data indicate that heterogeneity in LGL populations may result from the presence of both CTL and NK cell LGL.  相似文献   

5.
WSX-1 is the alpha subunit of the IL-27R complex expressed by T, B, NK/NKT cells, as well as macrophages and dendritic cells (DCs). Although it has been shown that IL-27 has both stimulatory and inhibitory effects on T cells, little is known on the role of IL-27/WSX-1 on DCs. LPS stimulation of splenic DCs in vivo resulted in prolonged CD80/CD86 expression on WSX-1-deficient DCs over wild-type DCs. Upon LPS stimulation in vitro, WSX-1-deficient DCs expressed Th1-promoting molecules higher than wild-type DCs. In an allogeneic MLR assay, WSX-1-deficient DCs were more potent than wild-type DCs in the induction of proliferation of and IFN-gamma production by responder cell proliferation. When cocultured with purified NK cells, WSX-1-deficient DCs induced higher IFN-gamma production and killing activity of NK cells than wild-type DCs. As such, Ag-pulsed WSX-1-deficient DCs induced Th1-biased strong immune responses over wild-type DCs when transferred in vivo. WSX-1-deficient DCs were hyperreactive to LPS stimulation as compared with wild-type DCs by cytokine production. IL-27 suppressed LPS-induced CD80/86 expression and cytokine production by DCs in vitro. Thus, our study demonstrated that IL-27/WSX-1 signaling potently down-regulates APC function and Th1-promoting function of DCs to modulate overall immune responses.  相似文献   

6.
We have examined a serum-deprived culture system in order to verify that it is suitable for the study of burst forming unit erythroid (BFU-E) progenitor cells from premature neonates. Optimum growth of BFU-E from premature neonates was observed with each media constituent using the same concentration as that previously described for adult subjects. Growth of immature BFU-E from premature neonates were highly dependant upon a source of Burst Promoting Activity and mature BFU-E derived colonies emerged at day 12 compared to day 14 in adults. Our preliminary results with the validated medium suggest that premature infants have increased peripheral blood concentrations of BFU-E compared to healthy adult controls.Abbreviations Ad Adherent cells - BPA Burst promoting activity - BFU-E Burst forming unit erythroid - Epo Erythropoietin - IL3 Interleukin-3 - LDC Low density (<1.077 g ml1) peripheral blood mononuclear cells  相似文献   

7.
Monoclonal antibodies reactive with T cells at various stages of maturation were used in negative selection experiments to study their effects on NK function in the presence of complement. Anti-D47 and anti-A50, respectively, directed against corticothymocytes and mature peripheral E+ cells were without effect. Anti-D66 reactive with an epitope of the T cell E receptor inhibited up to 60% of NK activity. Anti-D44, which primarily recognizes corticothymocytes and 60 to 80% of the E(+)-PBL was found to abrogate NK activity together with alloreactive CTL reactivity but to leave intact most of the MLR and PHA proliferative responses. Therefore D44 appears as a discrete antigen allowing preferential elimination of NK cells and CTL from PBL.  相似文献   

8.
Cyclosporine (CsA) blocked the generation of cytolytic activity in a primary MLR of mouse spleen cells. As expected from the known mechanism of action of this drug, it also blocked the accumulation of IL-2 during the MLR. Addition of human rIL-2 did not overcome the inhibition of CTL generation, even when it was added daily to keep its level similar to that produced in a normal MLR. Daily addition was necessary, because the CsA-inhibited MLR consumed IL-2, either by utilization or degradation. The outcome of a 5-day MLR in the presence of CsA (CsA-MLR) depended on whether or not IL-2 was continuously present. In the presence of IL-2, there was no generation of CTL activity, probably because such cultures contained IL-2-dependent suppressive elements described previously. However, when day 5 CsA-MLR cells generated in the absence of IL-2 were washed and recultured with human rIL-2, there was a burst of CTL activity, with a more than 50-fold increase in alloantigen-specific cytotoxicity within 24 to 48 h. This increase is not explainable simply by the proliferation of existing effector CTL. The noncytotoxic cells produced in an MLR in the presence of CsA, and which can be rapidly activated to cytotoxic effector cells by IL-2, are termed "precursor-effector CTL" (peCTL). They could be detected by day 3 of a primary CsA-MLR culture. Their conversion to effector CTL by IL-2 was not inhibited by CsA. Exposure of peCTL to IL-4 also generated CTL activity, to a somewhat lesser degree than IL-2, but the IL-4-induced activation was inhibited by CsA, suggesting that it depended on the induction of another CsA-sensitive lymphokine. The intracellular levels of mRNA encoding the CTL-specific serine esterases CCP1 and CCP2 (granzymes B and C, respectively) increased rapidly during the IL-2-driven conversion of peCTL to effector CTL. This study demonstrates that in the presence of CsA precursors for CTL can accumulate, and that these can be rapidly converted to cytotoxic effector cells by IL-2.  相似文献   

9.
We investigated the effects of IL-18 on the development of CD8+ effector T cells in DBA/2 anti-BDF1 whole spleen cell MLC and compared the results with those of IL-12. Addition of IL-18 to the MLC resulted in a twofold increase in CD8/CD4 ratios compared with the control cultures when cells were expanded in IL-2-containing medium following MLC. Purified CD8+ T cells recovered from the IL-18-stimulated MLC produced 20- to 30-fold more IFN-gamma after secondary stimulation with C57BL/6 spleen cells or anti-CD3 mAb, and exhibited strong allospecific CTL activity. Neither IL-18 nor IL-18-supplemented culture supernatants from DBA/2 anti-BDF1 MLC induced type I CD8+ effector T cells when purified CD8+ T cells were used as responder cells in primary MLC. Furthermore, CD4+ T cell depletion from the responder cells abrogated the IL-18-induced increase in secondary IFN-gamma production by CD8+ T cells, suggesting that IL-18-induced type I effector CD8+ T cell development was CD4+ T cell dependent. In marked contrast, adding IL-12 to primary MLC decreased CD8/CD4 ratios by 50% and suppressed secondary IFN-gamma production and CTL activity by CD8+ T cells regardless of concentration, whereas Th1 development was promoted by IL-12. Moreover, both IL-12 and IL-18 efficiently induced type I CD8+ effector T cells in C57BL/6 anti-BDF1 MLC. These findings show that IL-18 plays an important role in the generation of type I CD8+ effector T cells, and further suggest that functional maturation of CD8+ T cells is differentially regulated by IL-18 and IL-12.  相似文献   

10.
Highly purified human blood burst-forming units-erythroid (BFU-E) were used to study the effects of interferon γ (IFNγ). IFNγ inhibited erythroid colony formation, cell proliferation, and differentiation of day 3 to day 6 mature BFU-E in a dose-dependent manner. The primitive BFU-E (day 1 and day 2 cells) and later day 7 cells were less affected. IFNγ dose-response experiments demonstrated that the number and size of erythroid colonies were reduced at a concentration of 500 U/ml with more complete inhibition at 1,000 U/ml. Inhibition of day 4 to day 6 erythroid progenitors was first noted by 72 h of incubation with IFNγ, and target cell growth and differentiation continued to decrease with further incubation. IFNγ also induced erythroblast apoptosis which was demonstrated by both nuclear condensation and fragmentation plus flow cytometry with in situ end-labelling. Because day 3 to day 6 cells need stem cell factor (SCF) for development in serum-free culture, the relationship of IFNγ inhibition to this growth factor was investigated. The reduction in the number of erythroid colonies by IFNγ was reversed by SCF although the colony size was not completely re-established. In contrast, interleukin-3 did not have the capacity to overcome the inhibitory effects of IFNγ. Since IFNγ blood levels are elevated in some anemias of chronic disease, IFNγ may have a role in promoting this anemia and its inhibitory effect might be better overcome by SCF plus EP. However, the mechanism by which these growth factors overcome the inhibition of IFNγ, or vice versa, is unknown at the present time. © 1995 Wiley-Liss, Inc.  相似文献   

11.
Stimulation of cells from long-term primary MLC with Con A resulted in the generation of CTL activity comparable in magnitude to that induced by reexposure of the cells to the original stimulating cellular antigen. CTL generated by stimulation of long-term MLC cells with ConA had lytic activity specific for the original stimulating alloantigen used in primary MLC. The pattern of stimulation of long-term MLC cells with Con A differed from that of restimulation with alloantigen in that there was no detectable CTL activity the first 24 hr after Con A stimulation and the peak lytic activity occurred later. Unlike restimulation with alloantigen early lytic activity after Con A stimulation was dependent on DNA synthesis. PHA also proved to be an effective agent for stimulating cytolytic activity in long-term MLC cells. The response to PHA was comparable in magnitude to that generated by Con A. Stimulation of long-term MLC cells with T cell mitogens gave decreased cell recoveries relative to restimulation with alloantigen, however, the lytic activity per cells recovered was generally greater in the mitogen-stimulated cultures.  相似文献   

12.
Characterization of natural killer activity in sponge matrix allografts   总被引:1,自引:0,他引:1  
NK cell activity, defined by the ability of infiltrating host cells to lyse the YAC-1 tumor target, can be detected in sponge matrix allografts across all genetic barriers tested. Nonspecific tumor cell killing cannot be detected either within bulk populations of host-infiltrating cells or in populations enriched for non-adherent lymphocytes. NK activity is also detected in cells infiltrating a syngeneic sponge matrix graft although to a much lesser extent than an allogeneic graft. NK cell functional activity at the graft site precedes the appearance of alloimmune CTL by several days. The surface phenotype of the NK cell is Thy-1.2+ and L3T4- as determined by depleting the various subpopulations with antibody and C. Systemic treatment of sponge-bearing animals with repeated injections of anti-asialo GM1 (AGM1) results in inhibition of both NK activity and CTL activity recovered from the graft on days 5 to 9 after grafting, but on days 11 to 13 after grafting both NK activity and CTL activity are found within the sponge graft. Treatment of sponge-associated cells with anti-AGM1 in vitro or intrasponge injection of anti-AGM1 at various times after grafting eliminates NK activity more readily than alloimmune CTL activity. The intimate association observed between NK cells and alloimmune CTL at the graft site prompts further investigation into the role of NK cells in the allograft response.  相似文献   

13.
BACKGROUND: Interferon gamma is a cytokine that plays a central role in immunity, and is physiologically secreted by T and NK cells under appropriate stimuli during the immune response. By means of flow cytometry, we performed a single cell analysis of interferon gamma producing NK cells and their surface phenotype in normal and HIV(+) individuals that show several defects of cytokine production and cellular immunity. METHODS: PBMC or purified NK cells were stimulated for 1-12 h with PMA/ionomycin in the presence of monensin, subsequently stained for surface CD56 and CD3 or CD8, and for intracytoplasmic IFN-gamma, and analysed by flow cytometry. RESULTS: Our results show that CD56(+) NK cells are more efficient interferon gamma producers than T cells. Moreover, within the CD56(+) NK cell population, those that co-express low density CD8 are the best producers. Finally, we show that NK cells during HIV infection are more massively recruited to interferon gamma production than those from normal subjects. CONCLUSIONS: Both in the normal and HIV(+) subjects, a higher percentage of NK cells than T cells can produce IFN-gamma although differences can be identified within the NK cells subset in terms of IFN-gamma production. The production of IFN-gamma is fully achievable in the HIV(+) subjects, which is consistent with their elevated plasmatic levels of the cytokine. The possibility that NK cells that produce interferon gamma could represent a functionally distinct population committed to the production of this cytokine, is discussed.  相似文献   

14.
Alloantigen-specific suppressor T cells are activated from normal murine spleen cells in mixed lymphocyte reactions (MLR). These T cells are radioresistant and suppress the activation of cytotoxic T lymphocytes (CTL) in second primary MLR cultures. This report demonstrates that cyclosporin A (CsA) blocks the activation of these suppressor cells at a dose of 1 microgram/ml. However, reconstitution of CsA blocked cultures with IL 2 restores the activation of the suppressor T cells, but fails to significantly restore the activation of CTL in these same cultures. This differential activation requirement was used to establish T cell lines that demonstrate enriched suppressor cell activity but depletion of CTL activity. These findings are discussed in terms of the mechanism of action of CsA in these distinct T cell subsets and the relevance to models of allograft unresponsiveness.  相似文献   

15.
We investigated the effects of IL-12 and IL-18 on unstimulated murine splenocytes and observed that the two cytokines strongly synergized for their proliferation, whereas IL-12 and IL-18 alone were essentially inactive in this respect. Phenotypical and functional analyses of cells proliferating in response to IL-12 and IL-18 revealed that large granular Ly-49C(+)DX5(+)CD3(-)NK blasts were expanded in these cultures and that they displayed cytotoxic activity against Yac-1 cells, a murine NK cell target. Further analyses indicated three major differences between NK cells appearing in response to IL-12 and IL-18 and those derived in the presence of other NK cell growth factors, such as IL-2 or IL-15. First, a population of T-NK cells, i.e. expressing T cell (TCRalphabeta, CD3) and NK cell (Ly-49) markers, was detected amongst cells growing in IL-2 or IL-15 but not in cultures supplemented with IL-12 and IL-18. Second, most NK cells derived with IL-2 or IL-15 expressed the NK1.1 antigen, while those derived with IL-12 and IL-18 did not. Finally, striking differences were observed regarding cytokine production. Cells stimulated with IL-12 and IL-18 in combination, but not with IL-2 or IL-15, produced IFN-gamma, IL-3, IL-6 and TNF. IFN-gamma was not involved in the response of NK cells to IL-12 and IL-18, as indicated by experiments demonstrating that the combination of the two cytokines displayed similar effects on spleen cells from IFN-gammaR-knock-out mice. Receptor (IL-12Rbeta1, IL-12Rbeta2 and IL-18R) gene expression studies did not indicate that the mechanism underlying the synergy between IL-12 and IL-18 involved reciprocal induction of their receptors. Taken together, our results demonstrate that IL-12 and IL-18 exert striking synergistic activities for NK cell proliferation and activation, distinct from those induced by IL-2 or IL-15.  相似文献   

16.
Regulation of human cytolytic lymphocyte responses by interleukin-12.   总被引:39,自引:0,他引:39  
IL-12 is a heterodimeric cytokine which has been shown to cause the proliferation of activated T and NK cells, to enhance the lytic activity of NK cells, and to induce IFN-gamma production by resting and activated T and NK cells. We previously reported that IL-12 could synergize with IL-2 to activate human LAK cells in the presence of hydrocortisone but that IL-12 alone was inactive. We herein show that in the absence of hydrocortisone, IL-12 by itself can activate human LAK cells. IL-12-induced LAK cell activity was mediated predominantly by CD56+ lymphocytes. Activation of LAK cells by IL-12 appeared to be independent of IL-2 since it was not inhibited by neutralizing anti-human IL-2. However, IL-12- and IL-2-induced LAK cell activation could be partially inhibited by anti-human TNF-alpha. Moreover, IL-12 produced in situ appeared to play a role in IL-2-induced LAK cell activation since rat monoclonal antibodies to human IL-12 could partially inhibit the generation of LAK cells in response to IL-2. In addition to its effects on LAK cell responses, IL-12 could facilitate specific allogeneic human CTL responses. However, IL-12-facilitated CTL responses were blocked by neutralizing anti-human IL-2 indicating a requirement for IL-2 produced in situ. The ability of IL-12 to facilitate both nonspecific LAK and specific CTL responses suggests that it may be useful as a therapeutic agent against some tumors and infectious diseases.  相似文献   

17.
IFN-gamma is of central importance for the induction of robust cell-mediated immunity and for the activation of APC. Recent studies using experimental murine systems have now suggested a fundamental role for APC-derived IFN-gamma during infection with intracellular pathogens. It is currently unknown whether human dendritic cells (DC) can respond to bacterial stimulation with production of IFN-gamma. To test this question, we used human monocyte-derived DC stimulated by Mycobacterium bovis bacillus Calmette-Guérin as a model system. We demonstrate production of IFN-gamma mRNA and protein on the single cell level. IFN-gamma in DC cultures was not simply produced by contaminating lymphocytes because production of DC-IFN-gamma could also be demonstrated in highly purified DC cultures containing virtually no T, B, and NK cells. TLR2 was identified as a key receptor involved in triggering production of DC-IFN-gamma. Interestingly, DC-IFN-gamma seems to participate in an autocrine DC activation loop, and production of DC-IFN-gamma could be enhanced by costimulation of DC with IL-12/IL-15/IL-18. In conclusion, we have demonstrated production of IFN-gamma by human DC on the single cell level, identified TLR2 as a pattern recognition receptor involved in this process, and elucidated some of the functional consequences of autocrine IFN-gamma production by human DC.  相似文献   

18.
As an approach to dissect complex cellular events that lead to GvHR-associated immune disorders, we followed cytotoxic activities, including NK cytotoxicity, in the spleens of unirradiated F1 hosts undergoing GvHR induced by parental spleen cells. Spleen cells of (B10 X DBA/2)F1 or (B10 X AKR/J)F1 hosts undergoing GvHR induced by parental B10 spleen cells displayed a prompt and marked increase in NK cell activity within 36 hr, and the heightened activity lasted until day 8. The activity then declined abruptly and disappeared on day 12 of GvHR. Inversely, donor B10-derived CTL specifically directed to the opposite parental alloantigens of the F1 hosts emerged in these F1 host spleens on day 8, and the CTL activity reached a peak on day 12 when the host NK cell activity disappeared. During the period that the donor-derived anti-host CTL were present, these F1 host spleen cells lost not only NK cell activity but also the ability to mount in vitro CTL responses. In contrast, the respective F1 strain mice undergoing GvHR induced by the parental DBA/2 or AKR/J spleen cells showed only transient but marked increases in NK cell activity during the initial 36 hr, and then the activity decreased gradually to return to the normal level on day 10. In such GvHR F1 host spleens, donor-derived CTL could never be detected, and the spleen cells showed normal in vitro CTL responsiveness during the entire observation period of 16 days. These results are discussed from the viewpoint of genetically defined cellular events that lead to the GvHR-associated immune disorders.  相似文献   

19.
To facilitate the direct study of the molecular events that control the development of human burst-forming units-erythroid (BFU-E), we have developed a method to purify BFU-E from peripheral blood. Using density centrifugation, rosetting with a mixture of neuraminidase-treated and IgG-coated sheep erythrocytes, positive panning with anti-My10 monoclonal antibody, overnight adherence to plastic dishes, negative panning with monoclonal antibodies, and density centrifugation, human blood BFU-E were purified from 0.04% to 56.6%, a 1,400-fold purification with a 13% yield. More than 90% of purified BFU-E were recombinant interleukin-3 (rIL-3) dependent, which survived for 48 h with rIL-3 in the absence of recombinant erythropoietin (rEP), and 80% gave rise to erythroid bursts of more than 500 hemoglobinized cells. rEP dependency was not evident until after 72 h of incubation in vitro. The purified cells (day 1) were incubated with rIL-3 and rEP in liquid culture for 24 (day 2), 48 (day 3), and 72 (day 4) h and then were transferred into semisolid cultures and incubated until day 15. The size of the erythroid colonies observed in semisolid cultures decreased continuously in association with the incubation time of day 1 purified cells in liquid cultures. The first appearance of colony-forming units-erythroid (CFU-E) that gave rise to colonies of 8 to 49 cells was observed after 72 h of incubation of day 1 cells in the liquid culture. 125I-rEP was incubated for 5 h at 37 degrees C with purified cells (day 1) or with the cells that had been incubated in liquid culture for an additional 24-72 h, and the presence of erythropoietin (EP) receptors was investigated using autoradiography. Specific binding of 125I-rEP was detected in 19 +/- 7% of the initial day 1 BFU-E. The percentage of 125I-rEP-binding to erythroid progenitor cells and the amount of binding continuously increased as day 1 BFU-E matured. 125I-rEP specific binding was observed with all of the erythroid progenitor cells that had been incubated in liquid culture for 72 h. These data demonstrate that primitive BFU-E have a much lower number of EP receptors than CFU-E and develop an increased concentration of EP receptors in association with their maturation and loss of proliferative capacity.  相似文献   

20.
The murine white (W) spotting locus is the site of the c-kit gene and encodes a tyrosine kinase receptor while the complementary Steel (Sl) iocus encodes its ligand. Mutations at either locus have profound effects on hematopoiesis, particularly erythroid and mast cell proliferation. We added c-kit antisense oligonucleotides to long-term suspension cultures of enriched human umbilical cord progenitor cells. This resulted in the suppression of c-kit gene expression and the preferential suppression of the generation of erythroid burst-forming cells (BFU-E) which extended over the life of the culture (3 weeks). The results provide an in vitro model of the “W phenotype” in human hematopoiesis and confirm the importance of c-kit gene function in early erythropoiesis. Because the generation of BFU-E was suppressed even after c-kit gene expression had recovered, this gene product may be critical to the erythroid commitment process. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号