首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The equilibrium constant for binding of the gelsolin-actin complex to the barbed ends of actin filaments was measured by the depolymerizing effect of the gelsolin-actin complex on actin filaments. When the gelsolin-actin complex blocks monomer consumption at the lengthening barbed ends of treadmilling actin filaments, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. By using this effect the equilibrium constant for binding was determined to be about 1.5 X 10(10) M-1 in excess EGTA over total calcium (experimental conditions: 1 mM MgCl2, 100 mM KCl, pH 7.5, 37 degrees C). In the presence of Ca2+ the equilibrium constant was found to be in the range of or above 10(11) M-1. The rate constant of binding of the gelsolin-actin complex to the barbed ends was measured by inhibition of elongation of actin filaments. Nucleation of new filaments by the gelsolin-actin complex towards the pointed ends was prevented by keeping the monomer concentration below the critical monomer concentration of the pointed ends where the barbed ends of treadmilling actin filaments elongate and the pointed ends shorten. The gelsolin-actin complex was found to bind fourfold faster to the barbed ends in the presence of Ca2+ (10 X 10(6) M-1 s-1) than in excess EGTA (2.5 X 10(6) M-1 s-1). Dissociation of the gelsolin-actin complex from the barbed ends can be calculated to be rather slow. In excess EGTA the rate constant of dissociation is about 1.7 X 10(-4) s-1. In the presence of Ca2+ this dissociation rate constant is in the range of or below 10(-4) s-1.  相似文献   

2.
Using solid phase systems, the kinetics of binding of monoclonal antibody (LRB 45, IgG2b,kappa) to apoC-I and apoC-I on lipoproteins were investigated. At 25 degrees C, the association constant of LRB 45 antibody to apoC-I (3.56 X 10(6) M-1 X sec-1) was almost three times slower than the association constant LRB 45 antibody to lipoproteins (10.4 X 10(6) M-1 X sec-1). However, the dissociation constant of apoC-I from LRB 45 antibody (0.865 X 10(-4) sec-1) was also slower than the dissociation constant of lipoprotein from antibody (1.5 X 10(-4) sec-1). Thus, the calculated affinity constant (association constant/dissociation constant) of LRB 45 antibody for apoC-I was approximately half of that for lipoproteins (4.12 X 10(10) M-1 vs. 6.92 X 10(10) M-1). The intrinsic affinity constants for antibody binding to apoC-I and apoC-I on lipoproteins were determined by Scatchard analysis. The intrinsic affinity constant of antibody bound to apoC-I was estimated to be 5.49 X 10(10) M-1 whereas that of antibody binding to lipoproteins was 30 to 200 times less. Furthermore, ascites fluid from LRB 45 cell lines could immunoprecipitate serum lipoproteins. Thus, it is concluded that there is multiple binding of antibody to apoC-I on lipoproteins. This binding appears to increase the calculated affinity constant (avidity) for antibody-antigen interaction.  相似文献   

3.
Phalloidin enhances actin assembly by preventing monomer dissociation   总被引:20,自引:11,他引:9       下载免费PDF全文
Incubation of the isolated acrosomal bundles of Limulus sperm with skeletal muscle actin results in assembly of actin onto both ends of the bundles. These cross-linked bundles of actin filaments taper, thus allowing one to distinguish directly the preferred end for actin assembly from the nonpreferred end; the preferred end is thinner. Incubation with actin in the presence of equimolar phalloidin in 100 mM KCl, 1 mM MgCl2 and 0.5 mM ATP at pH 7.5 resulted in a slightly smaller association rate constant at the preferred end than in the absence of the drug (3.36 +/- 0.14 X 10(6) M-1 s-1 vs. 2.63 +/- 0.22 X 10(6) M-1 s- 1, control vs. experimental). In the presence of phalloidin, the dissociation rate constant at the preferred end was reduced from 0.317 +/- 0.097 s-1 to essentially zero. Consequently, the critical concentration at the preferred end dropped from 0.10 microM to zero in the presence of the drug. There was no detectable change in the rate constant of association at the nonpreferred end in the presence of phalloidin (0.256 +/- 0.015 X 10(6) M-1 s-1 vs. 0.256 +/- 0.043 X 10(6) M-1 s-1, control vs. experimental); however, the dissociation rate constant was reduced from 0.269 +/- 0.043 s-1 to essentially zero. Thus, the critical concentration at the nonpreferred end changed from 1.02 microM to zero in the presence of phalloidin. Dilution-induced depolymerization at both the preferred and nonpreferred ends was prevented in the presence of phalloidin. Thus, phalloidin enhances actin assembly by lowering the critical concentration at both ends of actin filaments, a consequence of reducing the dissociation rate constants at each end.  相似文献   

4.
The equilibrium constant for the dissociation of zinc ion from angiotensin-converting enzyme (ACE) was measured using zinc ion buffers of zinc chloride and nitrilotriacetic acid (NTA). The dissociation constant is 6.4 X 10(-10) M. The fraction of active enzyme at equilibrium is independent of the presence of substrate which indicates that hippuryl-histidylleucine binds equally well to the holoenzyme and apoenzyme. The rate constant for the dissociation of zinc from ACE was measured as 0.68 min-1 for the free enzyme; the rate constant for the enzyme substrate complex was roughly 0.18 min-1. The association of zinc ion and ACE is very fast; the rate constant is 1.06 X 10(9) M-1 min-1. Ethylenediaminetetraacetic acid (EDTA) and NTA rapidly remove zinc from ACE with rate constants of 1.27 X 10(3) and 2.2 X 10(3) M-1 min-1. The equilibrium constant for the reaction of NTA with ACE was measured as 4.6 X 10(-2) and was calculated for EDTA as 3.8 X 10(3).  相似文献   

5.
The reduction of metmyoglobin by the iron(II) complex of trans-1,2-diaminocyclohexane-N,N,N'N'-tetraacetate (FeCDTA2-) has been investigated. The equilibrium constant, measured spectrophotometrically, is 0.21 with a resulting reduction potential of 0.050 V for Mb0. The rate constant for the reduction is 28 M-1 sec-1 with a deltaH ++ of 13 kcal M-1 and deltaS ++ of -11 eu. Both CN- and OH- inhibit the reduction because of the relatively low reactivity of cyanometmyoglobin (Mb+CN-) and ionized metmyglobin (Mb+OH-). The rate constant for the reduction of Mb+CN- by FeCDTA2- is 4.0 X 10(-2) M-1 sec-1 and that for reduction of Mb+OH- is 4.8 M-1 sec-1. The nitric oxide complex of metmyoglobin is reduced with a rate constant of 10 M-1 sec-1. The kinetics of oxidation of oxymyoglobin by FeCDTA- were studied. The data are consistent with a mechanism where oxidation takes place entirely through the deoxy form. A rate constant of 1.45 X 10(2) M-1 sec-1 was calculated for the oxidation of deoxymyoglobin by FeCDTA-, in equilibrium constant and rate constant for reduction. The above data are discussed in terms of a simple outer-sphere reduction reaction.  相似文献   

6.
The kinetics of formation and dissociation of mono and bis complexes of Zn(II) with reduced glutathione (H4L+ = fully protonated form) were studied in aqueous solution at 25.0 +/- 0.1 degrees C and ionic strength 0.30 M (NaNO3) in the pH range 4.58 to 4.98 by temperature-jump. The reaction was found to proceed via two different mechanisms depending on degree of ligand protonation. In both cases, complex formation is predominantly if not completely through the sulfur. Reaction with the form HL-2 (only the amino nitrogen protonated), the dominant form of this species, proceeds by the expected rat limiting water loss (dissociative or Eigen) mechanism with rate constants of 9.3 X 10(7) M-1 sec-1 (+/- 24%) for mono and 5.1 X 10(7) M-1 sec-1 (+/- 25%) for bis complex formation. Reaction with H2L--(sulfur protonated) yields rate constants of 3.9 X 10(3) M-1 sec-1 (+/- 43%) for mono and 1.95 X 10(3) M-1 sec-1 (+/- 43%) for bis complex formation. The decrease in rate constant is attributed to blockage of the complexing site on reduced glutathione by intramolecular hydrogen bonding, with proton removal being the rate determining step.  相似文献   

7.
Kinetics of trypsin association with trypsin inhibitor from colostrum (IC) was studied. The association rate constant is 3-10-5 M- minus 1 sec- minus 1 at pH 7,8, 25 degrees C. The rate constant for the complex dissociation was determined from the kinetics of the IC displacement from the complex with trypsin by a specific substrate and was found to be 5-10- minus 6 sec- minus 1 (pH 7,8; 25 degrees C). The equilibrium constant (Ki) was measured in a special experiment and was equal to 4-10- minus 12 M (p H 7,8; 25 degrees C). The similarity of this reaction and the association of trypsin with other protein inhibitors was discussed.  相似文献   

8.
M Wanger  A Wegner 《Biochemistry》1985,24(4):1035-1040
Depolymerization of treadmilling actin filaments by a capping protein isolated from bovine brain was used for determination of the equilibrium constant for binding of the capping protein to the barbed ends of actin filaments. When the capping protein blocks monomer consumption at the lengthening barbed ends, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. In this way the ratio of capped to uncapped filaments could be determined as a function of the capping protein concentration. Under the experimental conditions (100 mM KCl and 2 mM MgCl2, pH 7.5, 37 degrees C) the binding constant was found to be about 2 X 10(9) M-1. Capping proteins effect the actin monomer concentration only at capping protein concentrations far above the reciprocal of their binding constant. Half-maximal increase of the monomer concentration requires capping of about 99% of the actin filaments. A low proportion of uncapped filaments has a great weight in determining the monomer concentration because association and dissociation reactions occur at the dynamic barbed ends with higher frequencies than at the pointed ends.  相似文献   

9.
The reaction between reduced Pseudomonas cytochrome c551 and cytochrome oxidase with two inorganic metal complexes, Co(phen)3(3+) and Mn(CyDTA)(H2O)-, has been followed by stopped-flow spectrophotometry. The electron transfer to cytochrome c551 by both reactants is a simple process, characterized by the following second-order rate constant: k = 4.8 X 10(4) M-1 sec-1 in the case of Co(phen)3(3+) and k = 2.3 X 10(4) M-1 sec-1 in the case of Mn(CyDTA)(H2O)-. The reaction of the c-heme of the oxidase with both metal complexes is somewhat heterogeneous, the overall process being characterized by the following second-order rate constants: k = 1.7 X 10(3) M-1 sec-1 with Co(phen)3(3+) and k = 4.3 X 10(4) M-1 sec-1 with Mn(CyDTA)(H2O)- as oxidants; under CO (which binds to the d1-heme) the former constant increases by a factor of 2, while the latter does not change significantly. The oxidation of the d1-heme of the oxidase by Co(phen)3(3+) occurs via intramolecular electron transfer to the c-heme, a direct bimolecular transfer from the complex being operative only at high metal complex concentrations; when Mn(CyDTA)(H2O)- is the oxidant, the bimolecular oxidation of the d1-heme competes successfully with the intramolecular electron transfer.  相似文献   

10.
The binding of triton X-100 to bovine serum albumin has been shown to exhibit positive cooperativity. Subsequent equilibrium dialysis studies indicate that the binding of Triton X-100 to sheep serum albumin likewise shows positive cooperativity, the first two stepwise equilibrium constants being K1 = 1.24 X 10(4) M-1 and K2 = 1.62 X 10(4) M-1. However, the mechanism for Triton X-100 binding to human serum albumin differs in that the binding isotherm indicates the binding sites are independent and identical. In the latter case the binding is described by the Scatchard model with an equilibrium constant of K = 7.2 X 10(3) M-1. The studies were conducted at 16 degrees C in pH 7.0, I = 0.05 phosphate buffer.  相似文献   

11.
Hemerythrin from Siphonosoma cumanense has a trimeric structure consisting of identical subunits, which have no cooperativity nor Bohr effect on oxygen-binding. The trimer was dissociated into its monomers by the modification of the SH group of its cysteines with p-chloromercuriphenylsulfonic acid (PCMPS), which was monitored by stopped-flow of both spectrophotomeric and small angle X-ray scattering methods. The results showed that the process involved sequential modification of the SH groups, dissociation into monomers, and auto-oxidation of ferrous iron in the active center. The modification of the SH groups with PCMPS followed second-order kinetics with a rate constant of 1.8 M-1.s-1. The dissociation and auto-oxidation followed first-order kinetics with rate constants of 4 X 10(-3) s-1 and 5 X 10(-4) s-1, respectively. The obtained rate of auto-oxidation was much faster than that in the native state. These findings lead to the conclusion that the trimeric state of S. cumanense hemerythrin is necessary to prevent auto-oxidation.  相似文献   

12.
A simplified method has been developed for the determination of antibody-hapten association kinetics that permits the study of high affinity interactions with second order forward rate constants of the order of 10-7 to 10-8 M-1 sec-1. Use of tritiated haptens of high specific activity and antibodies of high affinity allows reactions to be run at initial hapten and antibody concentrations of the order of 10-9 to 10-10M, well below the level at which mixing becomes the rate-limiting step. Separation of antibody-bound from free hapten by the use of dextran-coated charcoal can be carried out with sufficient rapidity (2 sec) that the systems under investigation are not appreciably disturbed. With this technique, the association of 3-H-ouabain with rabbit ouabain-specific antibody was found to occur with a rate constant of 0.8 times 10-7 M-1 sec-1, similar to association rates of dye haptens with antibodies of substantially lower affinity. The ratio of this association rate constant to the independently determined dissociation rate constant was 5.4 times 10-9 M-1, in satisfactory agreement with a ko value of 3.5 times 10-9 M-1 determined by Sips analysis of data obtained under equilibrium conditions. This approach should be applicable to the direct kinetic assessment of numerous high affinity antibody-hapten systems of current interest.  相似文献   

13.
The hydrolysis of 4-nitrophenyl acetate by metal complexes Co(en)2(imH)H2O3+, Co(en)2(bzmH)H2O3+, and Co(en)2(imCH3)H2O3+ (imH = imidazole, bzmH = benzimodazole, imCH3 = methyl imidazole) has been investigated in the pH range 5.4-8.9. The small difference in nucleophilic reactivity in the pH range 5.4-6.7 is assumed to be due to hydrogen bonding abilities of the imidazole and substituted imidazole ligands and small pKa differences (k2(imH) = 2.2 X 10(-2) M-1 sec-1, k2(bzmH) = 5.68 X 10(-2) M-1 sec-1, k2(imCH3) = 1.35 X 10(-2) M-1 sec-1, 40 degrees C, 1 = 0.3 NaClO4, pKa(imH) = 6.2, pKa(imCH3) = 6.2 and pKa(bzmH) = 5.9). In the pH range 7.8-8.9, the differences in nucleophilic reactivity (k3(imH) = 85.5 X 10(-2) M-1 sec-1, k3(bzmH) = 33.4 X 10(-2) M-1 sec-1, 40 degrees C, I = 0.3 NaClO4) are reconciled with a significant steric factor outweighing the acidity of the benzimidazole complex. In the pH region 6.7-7.7, the deviation from linearity is presumably due to both hydroxo and imido ligands functioning as nucleophiles, the latter being about 40 times stronger than the former.  相似文献   

14.
Interaction of tropomyosin-troponin with actin filaments   总被引:2,自引:0,他引:2  
A Wegner  T P Walsh 《Biochemistry》1981,20(19):5633-5642
The assembly of actin filaments with tropomyosin-troponin was investigated by means of light scattering. Binding curves of tropomyosin-troponin [consisting of all three subunits (holotroponin)] and of tropomyosin-troponin-T-I to actin filaments were analyzed by separating the affinity of tropomyosin-troponin for actin filaments and the affinity for the end-to-end contact of tropomyosin molecules. Under the experimental conditions (42.4 degrees C, 300 mM KCl), tropomyosin-holotroponin in the absence of calcium and tropomyosin-troponin-T-I had similar affinities for actin filaments whereas tropomyosin-holotroponin in the presence of calcium was found to bind more weakly. Tropomyosin-holotroponin and tropomyosin-troponin-T-I bound about 200-300-fold more strongly to binding sites with adjacent tropomyosin-troponin units than to isolated sites on actin filaments. The equilibrium constant for isolated association with actin filaments was more than 2-fold higher for tropomyosin-holotroponin in the absence of calcium (15 400 M-1) and tropomyosin-troponin-T-I (17 500 M-1) than for tropomyosin-holotroponin in the presence of calcium (6600 M-1). Binding curves of mixtures of tropomyosin-holotroponin in the presence of calcium and of tropomyosin-troponin-T-I were measured and analyzed on the basis of a model of cooperative binding of two types of large ligands to a one-dimensional homogeneous lattice. The results provided information on the strength of the end-to-end contacts of tropomyosin-troponin units in different positions on an actin filament. It was found that a tropomyosin-troponin unit binds adjacently to another unit in a different position on an actin filament about 2-fold more weakly than adjacent to a unit in the same position. With the aid of these results, it was possible to obtain information of the equilibrium distribution of tropomyosin-troponin in the two positions on actin filaments. Generation of a sequence of tropomyosin-troponin units in a different position on actin filaments was found to be 4-fold less favored than elongation of an existing sequence (cooperativity parameter sigma = 1/4). Shifting of tropomyosin-troponin on actin filaments appears to be accompanied by small free-energy changes in the various interactions of the components of actin-tropomyosin-troponin filaments and not to be an all-or-none reaction  相似文献   

15.
Spectrin dimers interact weakly with F-actin under physiological solvent conditions (with an association constant of about 5 X 10(3) M-1 at 20 degrees C). In the presence of the membrane skeletal constituent, protein 4.1, strong binding is observed; an analysis of the profiles for formation of a ternary complex leads to an association constant of about 1 X 10(12) M-2. This association becomes weaker at low ionic strength, whereas the opposite applies to the spectrin-actin interaction. The stability of the ternary complex is maximal at physiological ionic strength and somewhat above. The effect of temperature in the range 0-20 degrees C on the formation of the ternary complex is small, whereas the spectrin-actin interaction almost vanishes at low temperature. There is no detectable calcium sensitivity in either the binary or the ternary system within the limits of precision of our assay. The ternary complex resembles the natural system in the membrane in that the actin is resistant to dissociation and unavailable in the deoxyribonuclease assay; after selective proteolytic destruction of spectrin and 4.1, all the actin becomes available. In the absence of 4.1, spectrin dimers do not measurably protect the actin against dissociation.  相似文献   

16.
The kinetics of binding of bovine trypsin to a proteinaceous inhibitor of trypsin from buckwheat seeds (BWI-1a) has been studied. The association rate constant (k(ass)) was 2.2 x 10(6) M-1 x sec-1 and the dissociation rate constant (k(off)) of the enzyme--inhibitor complex was 3.5 x 10(-3) sec-1; the inhibition constant Ki was 1.5 nM. The inhibitor BWI-1a is of the slow, tightly binding type. The mechanism of the inhibition of bovine trypsin by the trypsin inhibitor BWI-1a was studied. The mechanism of inhibition was found to involve two steps according to the kinetic data.  相似文献   

17.
The effect of molybdate on the kinetic and thermodynamic properties of the dexamethasone-receptor interaction was studied in calf thymus cytosol. In the presence of molybdate both the equilibrium binding studies and the association and dissociation experiments reveal a significantly lower affinity of the receptor for [3]dexamethasone. At 0 degrees C the equilibrium dissociation constant increases from 0.8 nM to 1.8 nM, the association rate constant shifts from 1.5 X 10(8) M-1 h-1 to 0.2 X 10(8) M-1 h-1, whereas the rate of dissociation of the untransformed receptor increases from 0.04 h-1 to 1.1 h-1 in the molybdate-containing buffer. All these effects appear dependent on the concentration of molybdate but the dissociation of the transformed receptor (0.01 h-1) is unaffected. The enthalpy for the association, delta H not equal to, increases at least twofold whereas the entropy, both for the association (delta S not equal to = -25 to +104 J K-1 mol-1) and for the equilibrium (delta S degrees = -100 to +38 J K-1 mol-1), is markedly influenced by the presence of molybdate. Taken all together these data suggest that molybdate interacts with the receptor molecule turning it into a form that displays low affinity for steroid, in addition to the well-documented incapacity to transform itself. This fact leads us to think that both the binding and the transformation are the expression of conformational modifications involving molybdate-sensitive groups.  相似文献   

18.
The dissociation of nitric oxide from hemoglobin, from isolated subunits of hemoglobin, and from myoglobin has been studied using dithionite to remove free nitric oxide. The reduction of nitric oxide by dithionite has a rate of 1.4 X 10(3) M-1 S-1 at 20 degrees in 0.05 M phosphate, pH 7.0, which is small compared with the rate of recombination of hemoglobin with nitric oxide (25 X 10(6) M-1 S-1 (Cassoly, R., and Gibson, Q. H. (1975) J. Mol. Biol. 91, 301-313). The rate of NO combination with chains and myoglobin was found to be 24 X 10(6) M-1 S-1 and 17 X 10(6) M-1 S-1, respectively. Hence, the observed progress curve of the dissociation of nitric oxide is dependent upon the dithionite concentration and the total heme concentration. Addition of excess carbon monoxide to the dissociation mixture reduces the free heme yielding a single exponential process for chains and for myoglobin which is dithionite and heme concentration independent over a wide range of concentrations. The rates of dissociation of nitric oxide from alpha chains, from beta chains, and from myoglobin are 4.6 X 10(-5) S-1, 2.2 X 10(-5) S-1, and 1.2 X 10(4) S-1, respectively, both in the presence and in the absence of carbon monoxide at 20 degrees in 0.05 M phosphate, pH 7.0. Analogous heme and dithionite concentration dependence is found for the dissociation of nitric oxide from tetrameric hemoglobin. The reaction is cooperative, the intrinsic rate constants for the dissociation of the 1st and 4th molecules of NO differing about 100-fold. With hemoglobin, replacement of NO by CO at neutral pH is biphasic in phosphate buffers. The rate of the slow phase is 1 X 10(-5) S-1 and is independent of pH. The amplitude of the fast phase increases with lowering of pH. By analogy with the treatment of the HbCO + NO reaction given by Salhany et al. (Salhany, J.M., Ogawa, S., and Shulman, R.G. (1975) Biochemistry 14, 2180-2190), the fast phase is attributed to the dissociation of NO from T state molecules and the slow phase to dissociation from R state molecules. Analysis of the data gives a pH-independent value of 0.01 for the allosteric constant c (c = Kr/Kt where Kr and Kt are the dissociation constants for NO from the R and T states, respectively) and pH-dependent values of L (2.5 X 10(7) at pH 7 in 0.05 M phosphate buffer). The value of c is considerably greater than that for O2 and CO. Studies of the difference spectrum induced in the Soret region by inositol hexaphosphate are also reported. This spectrum does not arise directly from the change of conformation between R and T states. The results show that if the equilibrium binding curve for NO could be determined experimentally, it would show cooperativity with Hill's n at 50% saturation of about 1.6.  相似文献   

19.
Binding sites for [3H]cAMP on purified regulatory dimers of type II A-kinase (II-R2) are independent as assessed by equilibrium binding (KD = 6 +/- 1.3 nM at pH 7.2, 25 degrees; nH = 1.0) and by the lack of effect of unlabeled cAMP on dissociation rate (kd = 1.0 X 10(-3) sec -1 at pH 7.2, 25 degrees). In contrast, binding sites for [3H]cGMP on purified G-kinase displayed positively cooperative interactions in both equilibrium and dissociation assays with convex upward Scatchard plots, an nH of 1.6 and a dissociation rate (kd = 6.2 X 10(-3) sec-1 at pH 6.8, 0 degree) which was slowed by excess unlabeled cGMP (kd = 1.13 X 10(-3) sec-1 at pH 6.8, degree). Calculated transition state free energies of dissociation revealed that dissociation of nucleotide from G-kinase in the presence of cGMP was restrained by an energy barrier (20.8 kcal.mol-1) similar to that of II-R2 (20.9 kcal.mol-1), whereas dissociation from G-kinase without excess nucleotide occurred more easily (18.9 kcal.mol-1).  相似文献   

20.
Fluorescent derivatives of phalloidin are widely used to measure filamentous actin (F-actin) levels and to stabilize F-actin. We have characterized the kinetics and affinity of binding of tetramethylrhodaminyl (TRITC)-phalloidin to rabbit skeletal muscle F-actin and to F-actin in lysates of rabbit polymorphonuclear leukocytes (PMNs). We have defined conditions where TRITC-phalloidin can be used to inhibit F-actin depolymerization and to quantify F-actin without prior fixation. By equilibrium measurements, the affinity of TRITC-phalloidin binding to rabbit skeletal muscle F-actin (pyrene labeled) or to PMN lysate F-actin was 1-4 x 10(-7) M. In both cases, the stoichiometry of binding was approximately 1:1. Kinetic measurements of TRITC-phalloidin binding to PMN lysate F-actin resulted in an association rate constant of 420 +/- 120 M-1 sec-1 and a dissociation rate constant of 8.3 +/- 0.9 x 10(-5) sec-1. The affinity calculated from the kinetic measurements (2 +/- 1 x 10(-7) M) agreed well with that obtained by equilibrium measurements. The rate with which 0.6 microM TRITC-phalloidin inhibited 0.1 microM pyrenyl F-actin depolymerization (90% inhibition in 10 sec) was much faster than the rate of binding to pyrenyl F-actin (less than 1% bound in 10 sec), suggesting that phalloidin binds to filament ends more rapidly than to the rest of the filament. We show that TRITC-phalloidin can be used to measure F-actin levels in cell lysates when G-actin is also present (i.e., in cell lysates at high concentrations) if DNase I is included to prevent phalloidin-induced polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号