首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metal-mediated coupling between the nitriles RCN in the platinum(IV) complexes trans-[PtCl4(RCN)2] (RMe, Et, CH2Ph, Ph), cis/trans-[PtCl4(MeCN)(Me2SO)] and the newly synthesized bifunctional oximehydroxamic acid, viz. N,2-dihydroxy-5-(1-hydroxyiminoethyl)benzamide, proceeds smoothly in CH2Cl2 at 40-45 °C to accomplish the new metallaligands HNC(R)ONHC(O)C6H3(2-OH)(5-C(Me)NOH) with pendant oxime functionalities due to the regioselective addition of the reagent via its hydroxamic groups. The obtained iminoligands exist in hydroxamic/hydroximic tautomeric equilibrium in solution. The structures of the isolated compounds are based on elemental analyses (C, H, N), IR, 1D 1H, 13C{1H}, and 2D NMR correlation experiments, i.e. 1H,13C-COSY, 1H,13C long range COSY, 1H,15N-COSY, and 1H,15N long range COSY.  相似文献   

2.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   

3.
Reactions of 2-(arylazo)aniline, HL (H represents the dissociable protons upon orthometallation and HL is p-RC6H4NNC6H4-NH2; RH for HL1; CH3 for HL2 and Cl for HL3) with IrCl3 in methanol afforded orthometallated complexes of composition (L)(HL)IrCl2 (2) and (L)(MeOH)IrCl2 (3), respectively. Complex (L)(MeOH)IrCl2 (3) converted into (L)(CH3CN)IrCl2 (4) upon refluxing in acetonitrile. The X-ray structure of the complexes (L1)(HL1)IrCl2 (2a) and (L3)(CH3CN)IrCl2 (4c) have been determined and characterized unequivocally. The anionic L binds the metal in tridentate (C, N, N) manner for all the complexes.  相似文献   

4.
1-Methylisocytosine (1-MeIC) can be protonated at the endocyclic N(3) position (pKa of 1-MeICH+, 4.02 ± 0.04) or complexed at this position with (dien)MII (M = Pt, Pd). X-ray crystal structures of the protonated species 1 as well as the Pd (2) and Pt (3) complexes are reported, and gas phase structures of the cation 2 and 3 have been calculated by ab initio methods. These results are compared with results from X-ray crystallography. At high pH, the Pt complex 3 undergoes deamination of the exocyclic N(2)H2 group to the 1-methyluracilate complex. As compared to the situation with 1-methylcytosine (1-MeC), the accelerating effect of (dien)PtII is much less pronounced, however.  相似文献   

5.
A series of mononuclear organotin(IV) complexes of the types, R3SnL {R = C4H9 (1), C6H11 (2), CH3 (3) and C6H5 (4)}, R2SnClL {R = C4H9 (5), C2H5 (7) and CH3 (9)} and R2SnL2 {R = C4H9 (6), C2H5 (8) and CH3 (10)}, have been synthesized, where L = 4-(4-methoxyphenyl)piperazine-1-carbodithioate. The ligand-salt and the complexes have been characterized by Raman, FT-IR and multinuclear NMR (1H, 13C and 119Sn) spectroscopy and elemental microanalysis (CHNS). The spectroscopic data substantiate coordination of the ligands to the organotin moieties. The structures of complexes 4 and 6 have been determined by single-crystal X-ray diffraction and illustrate the asymmetric bidentate bonding of the ligand. The packing diagrams indicate O···H and π···H intermolecular interactions in complex 4 and intermolecular S2C···H interactions in complex 6, resulting in layer structures for both complexes. A subsequent antimicrobial study indicates that the compounds are active biologically and may well be the basis for a new class of fungicides.  相似文献   

6.
(OC-6-33)-Dichlorido(ethane-1,2-diamine)dihydroxidoplatinum(IV) (1) was carboxylated using succinic- or 3-methylglutaric anhydride. The resulting bis(carboxylato)platinum(IV) complexes display free, uncoordinated carboxylic acid groups which were further derivatized with primary aliphatic alcohols. The complexes were characterized in detail by elemental analysis, ESI-MS, FT-IR, as well as multinuclear (1H, 13C, 15N, 195Pt) NMR spectroscopy. Cytotoxic properties were evaluated in four human tumor cell lines originating from ovarian carcinoma (CH1, SK-OV-3), cervical carcinoma (HeLa) and colon carcinoma (SW480) by means of the MTT assay (MTT = 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). Structure-activity relationships showed that the cytotoxicity increased with increasing lipophilicity of the alcoholate moiety yielding IC50 values in the low micromolar or even low nanomolar range.  相似文献   

7.
The syntheses and characterization of five novel zinc(II) complexes with protonated kinetin (6-furfurylaminopurine) and its derivatives are described. Based on the results following from elemental analyses (C, H, N), FTIR, Raman, 1H and 13C NMR spectroscopy, conductivity measurements, thermogravimetric (TG) and differential thermal analyses (DTA), and single crystal X-ray analysis, the complexes of the general composition [Zn(HLn)Cl3xLn (1-5) have been prepared, where L1 = kinetin (6-furfurylaminopurine), L2 = 6-(5-methylfurfurylamino)purine, L3 = 2-chloro-6-furfurylaminopurine, L4 = 2-chloro-6-(5-methylfurfurylamino)purine and L5 = 2-chloro-6-furfurylamino-9-isopropylpurine, and x = 1/2-2. The structure of [Zn(HL1)Cl3]·L1 (1) has been determined by single crystal X-ray analysis. The Zn(II) atom is tetrahedrally coordinated by three chlorido ligands and one N3-protonated organic molecule forming a ZnCl3N donor set. The organic ligand L1 is coordinated to the Zn(II) centre through the N7 atom of the purine moiety. NMR spectroscopic study confirmed the N3 and N7 atom to be the protonation, and coordination site, respectively.  相似文献   

8.
Two tellurium ligands 1-(4-methoxyphenyltelluro)-2-[3-(6-methyl-2-pyridyl)propoxy]ethane (L1) and 1-ethylthio-2-[2-thienyltelluro]ethane (L2) have been synthesized by reacting nucleophiles [4-MeO-C6H4Te] and [C4H3S-2-Te] with 2-[3-(6-methyl-2-pyridyl)propoxy]ethylchloride and chloroethyl ethyl sulfide, respectively. Both the ligands react with HgBr2 resulting in complexes of stoichiometry [HgBr2 · L1/L2] (1/4), which show characteristic NMR (1H and 13C{1H}). On crystallization of 1 from acetone-hexane (2:1) mixture, the cleavage of L1 occurs resulting in 4-MeOC6H4HgBr (2) and [RTe+→HgBr2]Br (3) (where R = -CH2CH2OCH2CH2CH2-(2-(6-CH3-C5H3N))). The 2 is characterized by X-ray diffraction on its single crystal. It is a linear molecule and is the first such system which is fully characterized structurally. The Hg-C and Hg-Br bond lengths are 2.085(6) and2.4700(7) Å. The distance of four bromine atoms (3.4041(7)-3.546(7) Å) around Hg (cis to C) is greater than the sum of van der Waal’s radii 3.30 Å. This mercury promoted cleavage is observed for an acyclic ligand of RArTe type for the first time and is unique, as there appears to be no strong intramolecular interaction to stabilize the cleavage products. The 4 on crystallization shows the cleavage of organotellurium ligand L2 and formation of a unique complex [(EtS(CH2)2SEt)HgBr(μ-Br)Hg(Br)(μ-Br)2Hg(Br)(μ-Br)BrHg(EtS(CH2)2SEt)] · 2HgBr2 (5), which has been characterized by single crystal structure determination and 1H and 13C{1H} NMR spectra. The elemental tellurium and [C4H3SCH2]2 are the other products of dissociation as identified by NMR (proton and carbon-13). The cleavage appears to be without any transmetalation and probably first of its kind. The centrosymmetric structure of 5 is unique as it has [HgBr3] unit, one Hg in distorted tetrahedral geometry and one in pseudo-trigonal bipyramidal one. The molecule of 5 may also be described as having [(EtSCH2CH2SEt)HgBr]+ [HgBr3] units, which dimerize and co-crystallize with two HgBr2 moieties. There are very weak Hg?Br interactions between co-crystallized HgBr2 units and rest of the molecule. [Hg(3)-Br(1)/Hg(3)-Br(4) = 3.148(1)/3.216(1) Å]. The bridging Hg?Br distances, Hg(2)-Br(4)′, Hg(2)′-Br(4) and Hg(1)-Br(2), are from 2.914(1) to 3.008(1) Å.  相似文献   

9.
《Inorganica chimica acta》2004,357(8):2324-2330
The reactions of Me(Ph)SnCl2 and Et(Ph)SnCl2 with 2,6-diacetylpyridine bis(thiosemicarbazone) (H2DAPTSC) afforded the complexes [Me(Ph)Sn(HDAPTSC)]Cl · 1.25MeOH (1) and [Et(Ph)Sn(H2DAPTSC)]Cl2 · MeOH · H2O (2), respectively. Single-crystal X-ray crystallography showed that in both complexes the ligand, monodeprotonated in 1 and neutral in 2, is S(1),S(2),N(3),N(4),N(5)-coordinated, and the coordination geometry around the metal can be described as a distorted pentagonal bipyramid with the aryl and alkyl groups in axial positions. 1H and 119Sn NMR studies of solution in DMSO suggest that 2 dissociates completely in this solvent, while 1 evolves to the new complex [Me(Ph)Sn(DAPTSC)], with release of H2DAPTSC and Me(Ph)SnCl2. These conclusions were also supported by conductivity measurements.  相似文献   

10.
Summary It is demonstrated that sequential resonance assignment of the backbone 1H and 15N resonances of proteins can be obtained without recourse to the backbone amide protons, an approach which should be useful for assignment of regions with rapidly exchanging backbone amide protons and for proteins rich in proline residues. The method relies on the combined use of two 2D experiments, HA(CA)N and HA(CACO)N or their 3D analogs, which correlate 1H with the intraresidue 15N and with the 15N resonance of the next residue. The experiments are preferably conducted in D2O, where very high resolution in the 15N dimension can be achieved by using 2H decoupling. The approach is demonstrated for a sample of human ubiquitin, uniformly enriched in 13C and 15N. Complete backbone and 13C/1H resonance assignments are presented.  相似文献   

11.
One bond methyl 1H-13C and 13Cmethyl13C scalar and residual dipolar couplings have been measured at sites in an 15N, 13C, 50% 2H labeled sample of the B1 immunoglobulin binding domain of peptostreptococcal protein L to investigate changes in the structure of methyl groups in response to deuterium substitution. Both one bond methyl 1H-13C and 13Cmethyl13C scalar coupling constants have been found to decrease slightly with increasing deuterium content. Previous studies have shown that 1H-13C couplings in methyl groups are exquisitely sensitive to electronic structure, with decreases in coupling values as a function of deuteration consistent with a slight lengthening of the remaining H-C bonds. Changes in the HmethylCmethylC angle are found to be small, with average differences on the order of 0.3 ± 0.1° and 0.4 ± 0.2° between CH3, CH2D and CH3, CHD2 isotopomers, respectively. Knowledge of methyl geometry is a prerequisite for the extraction of accurate dynamics parameters from spin relaxation studies involving these groups.  相似文献   

12.
New bis(macrocyclic) dinickel(II) complexes with bis(Me2[14]-4,7-dien-6-ylidene), 2a and 2b, were synthesized by oxidation of a dinickel(II) complex with an unsaturated bis(macrocyclic) ligand containing four CN bonds, bis(Me2[14]-4,7-dien-6-yl) (1). Complex 2a was found to undergo intramolecular cyclization between the methyl group of one macrocycle and the carbon atom of the CN group of the other macrocycle to produce a bis(macrocyclic) dinickel(II) complex bridged by a fivemembered ring (3). The structures of 2b and 3 were determined by X-ray crystallography. The nonsymmetrical bis(macrocyclic) structure of the dinickel(II) complex 3 was reflected in its cyclic voltammogram and 1H and 13C NMR spectra. The catalytic capabilities of these bis(macrocyclic) nickel(II) complexes in the reductive debromination of 1-bromo-4-tert-butylbenzene were also investigated.  相似文献   

13.
Deprotonated 3-(4-nitrophenyl)-1-phenyltriazene N-oxide reacts with YCl3·6H2O and LnCl3·6H2O (Ln = Eu, Ho, Yb) to give the monoclinic chelate complexes [Y{O2N(C6H4)NNN(O)Ph}4](Et3NH)·H2O (1) (Ph = C6H5; Et = C2H5) and [LnIII{O2N(C6H4)NNN(O)Ph}4](Et3NH)·H2O·{CH3OH∗} {LnIII = Eu (2), Ho (3), Yb∗ (4), in which the metal centers present a square antiprismatic configuration. As already observed for hydrated ammonium complexes of triazene-oxides ligands with (C6H4)−NO2 groups, multiple, effective O···H and N···H interactions hold the species in supramolecular 3D assemblies. The optical and the luminescent properties of the triazene-oxide europium complex 2 are also presented and fully discussed.  相似文献   

14.
A new ruthenium nitric oxide complex with the bidentate phosphine, 1,2-bis(diethylphosphino)ethane (depe), has been synthesized and characterized by UV-Vis, infrared, EPR, NMR, electrochemical techniques and X-ray structure determination. The electronic spectrum showed a typical band of dπ→pπ* charge-transfer (CT) transition, assigned to Ru(II)NO transition, and the vibrational spectrum exhibited a peak of nitrosyl ligand at (νNO=1851 cm−1). A model structure for this complex has been proposed based on 1H, 1H{31P}, 31P{1H}, 13C{1H}, COSY 1H1H{31P}, J-Resolved, HSQC, HMBC, HSQC 1H13C{31P} and 1H13C HSQC/1H1H TOCSY spectral data, and confirmed by X-ray diffraction. The nitrosonium character for the NO ligand become evident through both electron paramagnetic resonance and X-ray data (angle RuNO=177.4(3)°). The reversible monoeletronic process at E1/2=0.040 V versus SHE was assigned to the ligand NO+/NO redox couple. Under treatment with Cd(Hg) solutions containing the [Ru(NO)(depe)2Cl](PF6)2 yields a signal in the EPR spectrum (g=1.99 and g//=1.88) which fitted quite well with the simulated spectra of coordinated NO species.  相似文献   

15.
Sequence-specific assignments have been obtained for side chain methyl resonances of Val, Leu and Ile in the outer membrane protein X (OmpX) from Escherichia colireconstituted in 60 kDa micelles in aqueous solution. Using previously established techniques, OmpX was uniformly 2H,13C,15N-labeled with selectively protonated Val-1,2, Leu-1,2and Ile-1methyl groups. The thus labeled protein was studied with the novel experiments 3D (H)C(CC)-TOCSY-(CO)-[15N,1H]-TROSY and 3D H(C)(CC)-TOCSY-(CO)-[15N,1H]-TROSY. Compared to the corresponding conventional experimental schemes, the TROSY-type experiments yielded a sensitivity gain of about 2 at 500 MHz. The overall sensitivity of the experiments was further enhanced more than two-fold by the use of a cryoprobe. Complete assignments of the proton and carbon chemical shifts were obtained for all isopropyl methyl groups of Val and Leu, as well as for the 1-methyls of Ile. The present approach is applicable for soluble proteins or micelle-reconstituted membrane proteins in structures with overall molecular weights up to about 100 kDa, and adds to the potentialities of solution NMR for de novostructure determination as well as for functional studies, such as ligand screening with proteins in large structures.  相似文献   

16.
The reaction of a new bifunctionalized ylide, Ph2PCH2PPh2C(H)C(O)(C6H4Cl) (2) with mercury(II) halides in equimolar ratios using dry methanol as solvent yielded the P, C-chelated complexes, {HgX2[Ph2PCH2PPh2C(H)C(O)(C6H4Cl)]} where X = Cl (3), Br (4), I (5). The structures of complexes 4 and 5 have been characterized crystallographically. Single crystal X-ray analyses reveal the presence of mononuclear complexes containing Hg atom in a distorted tetrahedral environment. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR. A theoretical study at DFT (B3LYP) level using standard CEP-31G basis set showed that the experimentally determined structure of the complex 5 is about 0.6-15.75 kcal mol−1 more stable than its other bonding modes.  相似文献   

17.
The reactions of CoCl2 with three equivalents of 2-(phenylimino)pyrrolyl sodium salts, performed under a nitrogen atmosphere, lead to the formation of the Co(III) complexes [Co(κ2N,N′-NC4H3C(H)N-C6H5)3] (2a), [Co(κ2N,N′-NC4H3C(CH3)N-C6H5)3] (2b) and [Co(κ2N,N′-NC16H9C(H)N-C6H5)3] (2c), accommodating three chelating iminopyrrolyl ligands. Complexes 2a-c were obtained in moderate yields, and their characterisation by 1H, 13C NMR and X-ray diffraction show they are diamagnetic and have an octahedral geometry about the cobalt centre, respectively. Uncharacterised products were obtained in the same reaction involving ligand precursors such as 2-(2,6-dimethylphenylimino)pyrrolyl sodium salts, which is attributed to a greater steric hindrance in the coordination of three of these bulkier ligands. The redox behaviour of complexes 2a-c shows an irreversible reduction wave with a peak potential in the range −3.2 to −3.7 V. Upon reduction, the complexes decompose giving rise, in the case of 2a, to a redox pattern compatible with the formation of [Co(κ2N,N′-NC4H3C(H)N-C6H5)2].  相似文献   

18.
The properties of isothiocyanato(3-thiapentane-1,5-dithiolato)oxorhenium(V) [ReO(SSS)NCS, (1a), (3+1) type], where isothiocyanato occupies the fifth position, have been studied. Two linkage isomers, i.e., ReO(SSS)NCS (1a) and ReO(SSS)SCN (1b), were found to be formed during syntheses. The sufficient quantities of 1a were isolated in the solid state, and characterized by X-ray crystallography and IR spectroscopy. From 1H and 15N NMR measurements, it was found that 1a is in equilibrium with 1b in liquid state. In the solvents with low dielectric constant such as CH2Cl2, only 1a isomer was detected, while in the solvents with high such as CH3CN, both 1a and 1b isomers were observed. We have obtained the equilibrium constant (Kiso) for the linkage isomerization reaction in CD3CN by measuring 15N NMR spectra at various temperatures. The values of Kiso at 25 °C, the standard enthalpy (ΔH°), and the standard entropy (ΔS°) for the isomerization equilibrium were evaluated as 0.409, 14.4 kJ mol−1, and 40.9 J K−1 mol−1, respectively.  相似文献   

19.
A series of the first zinc(II) complexes of the general composition [Zn(Ln)2Cl2xSolv (1-5) involving kinetin [N6-furfuryladenine, L1, xSolv = CH3OH, complex 1] and its derivatives, i.e. N6-(5-methylfurfuryl)adenine (L2, xSolv = 2H2O, 2), 2-chloro-N6-furfuryladenine (L3, 3), 2-chloro-N6-(5-methylfurfuryl)adenine (L4, 4) and 2-chloro-N6-furfuryl-9-isopropyladenine (L5, 5), as N-donor ligands has been synthesized. The complexes have been fully characterized by elemental analyses (C, H, N), FTIR, Raman, 1H and 13C NMR spectroscopy, conductivity measurements, thermogravimetric (TG) and differential thermal (DTA) analyses. Single crystal X-ray analysis determined the molecular structures of 2-chloro-N6-furfuryl-9-isopropyladenine (L5) and the complex [Zn(L1)2Cl2]·CH3OH. The Zn(II) ion is tetrahedrally coordinated by two chlorido ligands and two molecules of the L1 organic compound. The two ligands L1 are coordinated to the central Zn(II) ion via the N7 atoms. This conclusion can also be drawn from multinuclear NMR spectroscopic experiments.  相似文献   

20.
The reaction of lead(II) nitrate with trisodium citrate Na3(C6H5O7) in a 1:22.5 ratio at pH 4.8 provides crystals of {Na(H2O)3}[Pb5(H2O)3(C6H5O7)3(C6H6O7)]·9.5H2O (1). The structure of 1 is two-dimensional and exhibits five distinct Pb(II) sites and four different modes of citrate bonding. The five lead sites all display hemidirected coordination geometries, that is, irregular distribution of neighboring oxygen atoms resulting in obvious gaps in the coordination spheres. Consequently, the lead coordination geometries exhibit proximal bonding to a number of oxygen donors, as well as distal interactions with nearest neighbors. The coordination numbers vary from 8 to 10, with ‘5+3’, ‘5+4’, ‘6+4’ and ‘7+3’ coordination modes where the first number refers to the proximal ligands and the second to the distal set. The four crystallographically distinct citrate groups include three with deprotonated carboxylate groups (C6H5O7)3− and one with a single protonated carboxyl group (C6H6O7)2. The citrate ligands bridge 3, 5, 7 and 7 lead sites. Three of the citrate groups exhibit tridentate chelation coordination to a lead site through two carboxylate oxygen donors and the hydroxyl groups. One citrate group projects an uncoordinated -OH group and a pendant protonated carboxyl group into the interlamellar domain. This latter carboxyl group coordinates to a sodium cation, which exhibits five coordinate geometry defined by three aqua ligands and the carbonyl oxygen of the -CO2H groups in the basal plane and a citrate -OH donor in the apical position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号