首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An affinity-purified polyclonal antibody against soybean seed lipoxygenase-2 was prepared and used to characterize the immunological relatedness of lipoxygenase isozymes 1 and 2 and lipoxygenases from soybean seedling roots, hypocotyls, leaves, and cotyledons. All soybean lipoxygenases tested cross-reacted with the anti-lipoxygenase-2. Cross-reactivity of seed-derived lipoxygenases was evidenced by formation of a line of identity in double-diffusion tests, by positive results on an immunoblot, and by antibody precipitation of enzyme activity. Levels of anti-lipoxygenase-2, which inhibited lipoxygenase-2 activity, had no effect on lipoxygenase-1 activity. Root, hypocotyl, and leaf lipoxygenases did not form precipitation lines in double-diffusion tests but the anti-lipoxygenase-2 did inhibit and precipitate lipoxygenase activity from these sources as well as cross-react on immunoblots. All the cross-reactive lipoxygenases examined were found to have the same apparent molecular weight. Lipoxygenase activity found in soybean seedling roots, hypocotyls, leaves, and cotyledons is associated with proteins which are all immunologically related to the seed-derived enzymes.  相似文献   

2.
Some other ways to elute Protein A adsorbed on an adsorbent for the affinity precipitation process than desorption with a glycine-HCl buffer (pH 2.5) are examined. Protein A was recovered at a satisfactory yield by dissociation with a 3.5 M KSCN solution without exposure to extreme low pH.  相似文献   

3.
Mung bean was investigated as a novel source of lipoxygenase in the natural production of the green-note aroma compound hexanal. Lipoxygenase extracted from mung bean catalyzed the oxidative reaction of linoleic acid, after which the intermediate hydroperoxide compound was split via green bell pepper hydroperoxide lyase to produce hexanal. In comparison to soybean lipoxygenase, mung bean lipoxygenase was found to be a good substitute as it produced 15.4 mM (76% yield) hexanal while soybean gave 60% yield. The mung bean pH profile comprised a wide peak (optimum pH 6.5) representing lipoxygenase-2 and lipoxygenase-3 isozymes, whereas two narrower peaks representing lipoxygenase-1 and lipoxygenase-2/3 isozymes were observed for soybean (optimum pH 10). Extraction at pH 4.5 was preferred, at which specific lipoxygenase activity was also the highest.  相似文献   

4.
Immunoadsorption affinity chromatography was used to isolate and purify human lysozyme. The immunoadsorbent was prepared by coupling sheep anti-(human leukemic lysozyme) IgG to epoxy-activated Sepharose 6B. Lyophilized parotid saliva (21) was resuspended in distilled water (325 ml, 50 mg/ml, w/v) and applied to a column which had a capacity to bind 4.25 mg human enzyme. Non-adsorbed material did not contain lysozyme, as determined by enzymatic and immunological analyses. All lysozyme activity present in the applied sample (1.97 mg) bound to and was desorbed from the column by elution with 0.2 M sodium acetate HCl buffer, pH 1.8. The isolated material was homogeneous as determined by cationic and sodium dodecyl sulfate/polyacrylamide gel electrophoresis, ultracentrifugation, amino acid and amino-terminal analyses, and immunoelectrophoretic analysis. The one-step purification procedure yielded a 1370-fold increase in specific activity. Human lysozyme was also selectively purified by this method from an ammonium sulfate precipitate of the urine of a patient with chronic monocytic leukemia. Amino acid and polyacrylamide gel electrophoretic analyses indicated that the purified enzyme was identical to human lysozyme isolated from leukemic urine by classical biochemical techniques.  相似文献   

5.
Reusability of avidin-biotinylated IgY columns for immunoaffinity chromatography was examined by repeated use and regeneration. An enzyme-linked immunosorbent assay-elution assay using CovaLink NH microtiter plates was used to find the optimal conditions for regeneration of columns. Actigel avidin-biotinylated IgY column retained about 90% of its initial IgG binding capacity after 50 cycles, with 0.1 M glycine-HCl buffer, pH 2.8, as eluent, requiring no regeneration. However, IgG binding capacity of UltraLink avidin-biotinylated IgY column gradually decreased to 75 and 65% after 10 and 20 cycles, respectively, with the commercial eluent, Actisep. Results from the CovaLink NH system agreed with those from UltraLink avidin-biotinylated IgY columns. The UltraLink avidin-biotinylated IgY column was regenerated twice, by applying 8 M guanidine-HCl, pH 1.6, to dissociate biotinylated IgY antibodies from the column. About 40 and 25% of IgG binding capacities remained after the first and second regeneration. By applying new biotinylated IgY to the treated columns, about 95 and 90% of the initial IgG binding capacity before any treatment were recovered. These results demonstrated that avidin-biotinylated IgY columns are reusable with or without regeneration depending on the avidin-immobilized matrix.  相似文献   

6.
A novel magnetic support based on gum Arabic (GA) coated iron oxide magnetic nanoparticles (MNP) has been endowed with affinity properties towards immunoglobulin G (IgG) molecules. The success of the in situ triazine ligand synthesis was confirmed by fluorescence assays. Two synthetic ligands previously developed for binding to IgG, named as ligand 22/8 (artificial Protein A) and ligand 8/7 (artificial Protein L) were immobilized on to MNPs coated with GA (MNP_GA). The dimension of the particles core was not affected by the surface functionalization with GA and triazine ligands. The hydrodynamic diameters of the magnetic supports indicate that the coupling of GA leads to the formation of larger agglomerates of particles with about 1 µm, but the introduction of the triazine ligands leads to a decrease on MNPs size. The non‐functionalized MNP_GA bound 28 mg IgG/g, two times less than bare MNP (60 mg IgG/g). MNP_GA modified with ligand 22/8 bound 133 mg IgG/g support, twice higher than the value obtained for ligand 8/7 magnetic adsorbents (65 mg/g). Supports modified with ligand 22/8 were selected to study the adsorption and the elution of IgG. The adsorption of human IgG on this support followed a Langmuir behavior with a Qmáx of 344 mg IgG/g support and Ka of 1.5 × 105 M. The studies on different elution conditions indicated that although the 0.05 M citrate buffer (pH 3) presented good recovery yields (elution 64% of bound protein), there was occurrence of iron leaching at this acidic pH. Therefore, a potential alternative would be to elute bound protein with a 0.05 M glycine‐NaOH (pH 11) buffer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
SSPE brain homogenate extracted at pH 7.4 yields immunoglobulin with a 4- to 5-fold greater hemagglutination inhibition activity per microgram of IgG than serum from the same patient. Serial washing of the homogenate results in a low level steady-state release of IgG. Elution of the washed sediment with pH 2.5, 0.1 M glycine buffer results in a 2- to 3-fold increase in recovery of hemagglutination inhibition activity with a greater hemagglutination inhibition activity per milligram of IgG than the IgG recovered by phosphate-saline extraction at pH 7.4.  相似文献   

8.
In this work, we investigated the feasibility of using phenyl boronate (PB) chromatography for the direct capture of monoclonal antibodies from a CHO cell supernatant. Preliminary results, using pure protein solutions have shown that PB media can bind to human antibodies, not only at strong alkaline conditions but also at acidic pH values. In fact, antibodies have been found to bind in the pH range 5.5-8.5. On the other hand, insulin and human serum albumin did not bind at alkaline pH but at lower pH, which reflects the importance of non-specific interactions with the matrix. Different binding and eluting buffers were evaluated for the capture of immunoglobulin G (IgG) from a CHO cell supernatant and the most promising results were obtained using 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid at pH 8.5 as binding buffer and 1.5 M Tris-HCl as eluting buffer. Using a step elution, all IgG was recovered in the elution pool with a maximum purification factor of 56. A gradient elution allowed a further increase of the final purity, yet achieving a slightly lower yield. IgG recovery was around 85% and the purification factor was 76. The highest purity was obtained when the pH of the cell supernatant feed was previously adjusted to 8.5. Starting from an initial protein purity of 1.1% and high-performance liquid chromatography (HPLC) purity of 2.2%, after PB adsorption, a final protein purity of 85% and a HPLC purity of 88% was achieved.  相似文献   

9.
Irreversible inhibition of soybean lipoxygenase-1 (SL-1) was accomplished via a controlled potential oxidative electrolysis of 1,5-dihydroxynaphthalene (1,5-DHN) at +0.8 V vs SCE. The inactivation of SL-1 with this known inhibitor was greatly enhanced under these electrolytic conditions to which the enzyme itself was stable. Electrolyses were run at 0 degree C in a 0.05 M phosphate buffer, pH 7.0, using graphite cloth electrodes. The rate of inactivation was observed to be limited by and dependent on the anodic oxidation of 1,5-DHN. The non-oxidizable (at this potential) inhibitor indomethacin was shown to protect the enzyme from irreversible inactivation, however, an external nucleophile (2-mercaptoethanol) had little effect. These initial studies support the capability of such electrochemical methods for the site-specific covalent modification (affinity labelling) of lipoxygenase, and perhaps other enzymes.  相似文献   

10.
A protocol for the purification of polyclonal antibodies from ovine serum using the synthetic protein A absorbent MAbsorbent A2P is described. Clarified serum is loaded directly onto the affinity column without prior adjustment and albumin and unwanted serum components are washed from the column using a sodium octanoate buffer before elution of bound antibodies. MAbsorbent A2P was shown to bind approximately 27 mg ml(-1) of polyclonal immunoglobulin under overloading conditions, with eluted IgG purities of >90% and minor levels of albumin (approximately 1%). The anticipated time required to complete the purification protocol is 6-7 h. Although the protocol is similar to methods utilized for antibody purification using chromatography with protein A derived from the cell wall of the microorganism Staphylococcus aureus or protein G from Streptococcus as the affinity ligands, affinity absorbents based on synthetic ligands offer a number of advantages to compounds derived from biological sources, in particular robustness, relatively low cost, ease of sanitization and, in principle, lack of biological contamination.  相似文献   

11.
A highly purified trypsin inhibitor was obtained from Echinodorus paniculatus when an extract prepared from E. paniculatus seed flour (25 gl(-1), with 0.1 M ammonium acetate buffer, pH 8.3, under agitation for 6 min at 28 degrees C) was chromatographed on Sephadex G-25 (12 mlh(-1)), followed by affinity chromatography on immobilized Cratylia mollis isolectins (Cra Iso 1,2,3-Sepharose). The column chromatography was performed at 24 degrees C; the matrix was washed (30 mlh(-1)) with 0.1 M sodium phosphate buffer, pH 7.4 or with the same buffer containing 0.2 M glucose, followed by application of inhibitor sample and elution with 0.015 M sodium borate buffer, pH 7.4, or 1.0 M NaCl. A purified fraction of inhibitor was obtained by gel filtration chromatography (GF-450/HPLC column). Trypsin inhibitory activity was eliminated when the inhibitor was treated with metaperiodate showing that the carbohydrate moiety was important for trypsin inhibition. Binding of inhibitor was also evaluated on immobilized concanavalin A (Con A-Sepharose) using previously described chromatographic conditions with results similar to Cra Iso 1,2,3-Sepharose chromatography.  相似文献   

12.
A monoclonal antibody against recombinant thermostable α-amylase produced by Escherichia coli was isolated from serum-free medium and immobilized on Sepharose 4B. The adsorption equilibrium between α-amylase and the immobilized immuno-adsorbent showed a Langmuir type isotherm. The breakthrough curve calculated numerically using the averaged volumetric coefficient coincided well with the experimental data. More than 90% of the activity of bound α-amylase could be recovered by eluting with glycine-HCl buffer (pH 2.5). The elution profile at pH 2.5 became sharper with increasing temperature. By using an immuno-affinity column, the recombinant α-amylase produced by E. coli could be purified homogeneously from crude extract enzyme solution with two-step elution.  相似文献   

13.
Human haptoglobin (Hp) is classified as three phenotypes: Hp 1-1, 2-1, and 2-2. Previously, we had isolated this protein by affinity columns using either hemoglobin or monoclonal antibody (mAb) prepared against Hp beta-chain (clone 8B1-3A). The isolated Hp from both methods, however, contaminates plasma apolipoprotein A-I (apoA-I). In the present report, we have developed a novel affinity column procedure using an mAb prepared against alpha-chain of Hp (clone 3H8) for Hp purification. Plasma was first chromatographed onto the column followed by a normal wash with a buffer containing 0.12 M NaCl and 0.02 M phosphate, pH 7.4 (PBS). The bound proteins were then prewashed with a 0.04% sodium dodecyl sulfate (SDS)-PBS, pH 7.4, to remove the low-affinity bound apoA-I from Hp. Finally, the bound Hp was eluted with a 0.1% SDS-PBS, pH 11, and collected in tubes containing 1 M Tris-HCl, pH 6.8. As a result, the isolated Hp was devoid of apoA-I and was able to retain the biological function by forming an Hp-hemoglobin complex. The homogeneity of each isolated Hp 1-1, 2-1, or 2-2 was greater than 95% with an yield greater than 50%. The procedure described here is significantly improved in time consumption, recovery, and purity. The rationale, design, and optimization for each step are described in detail.  相似文献   

14.
Surface receptors of guinea pig peritoneal macrophages specific for the Fc region of IgG (Fc gamma receptor) were isolated and identified as a surface-radioiodinated component with a molecular weight of 44,000 that bound in an Fc-specific manner to IgG2 of guinea pig immunoglobulin immobilized in any of the following three different ways: IgG2 antibody in insoluble immune complex, IgG2 antibody bound to antigen-coupled Sepharose, and IgG2 covalently coupled to Sepharose. In order to obtain the Fc gamma receptor retaining the binding activity, the Fc-binding component was isolated by IgG2 affinity chromatography in which mild acidic buffer (pH 5.0-4.0) was chosen to elute the component bound to the affinity column. Forty-five to sixty-two percent of the eluted radioactivity was shown to rebind to the IgG2-affinity column. The bound fraction showed a single radioactive peak of 44,000 daltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Fc-binding component isolated by the affinity chromatography behaved similarly in gel filtration in the presence of a detergent, as did the detergent-solubilized Fc gamma receptor before isolation by affinity chromatography. These results suggested that the Fc gamma receptor was isolated in a native form. Furthermore, it was confirmed that the isolated Fc gamma receptor is distinct from actin or the actin-like protein (DNase I-binding protein) which had been reported to bind to IgG-affinity column.  相似文献   

15.
Three lipoxygenase isoforms were isolated from Glycine max embryo axes. A number of proteins around 97 kDa cross-reacted with several anti-actin and anti-myosin antibodies and these were used to follow their purification through gel filtration, hydroxyapatite and anion exchange columns. The 97-kDa cross-reactive material eluted in the unbound fractions of the last anion exchange column, and displayed two components of pI's 6.2 and 6.3. Further phase partition of this fraction in TX-114 yielded a hydrophobic 97 kDa protein. Additionally, a 95-kDa protein was retained and eluted from this last column. Partial peptide sequences indicated that the 95 kDa protein was soybean lipoxygenase-1, the first 97 kDa protein was lypoxygenase-3, and the hydrophobic 97 kDa protein was lipoxygenase-2. Several possible reasons for the cross-reactivity with the antibodies are discussed. To our knowledge, this is the first example of individual lipoxygenase isoforms isolated from soybean embryo axes.  相似文献   

16.
Reliable analysis using an immunosensor strongly depends on the specificity, activity, and sensitivity of the antibody. Immobilization of antibody on the solid matrix enables its repeated use, for which it is required to dissociate the antigens and antigen-enzyme conjugate from the immobilized antibody matrix after each use and while doing so, a maximum retention of activity and specificity are crucial requirements. In the present investigation, on the development of an immunosensor for the organophosphorus pesticide ethyl parathion (EP) using EP antibodies, different dissociating agents such as organic solvents, detergents and acidic buffers, that is, dimethyl sulphoxide (DMSO), Tween-20, cetyl trimethylammonium bromide (CTAB), methanol, chloroform, guanidium chloride (GdmCl), glycine-HCl (Gly-HCl) buffer in the pH range of 1.5-3.0, pierce buffer and combination of DMSO and methanol in phosphate buffer and Gly-HCl buffer and salts like NaCl and MgCl2 were used. Generally about 50-60% dissociation was obtained with some degree of denaturation of the antibody immobilized on the sepharose matrix. However, 1% DMSO in combination with 0.2 M Gly-HCl buffer at a pH of 2.3 showed 97% dissociation and the immobilized antibody retained sufficient activity to carry out 14 reproducible assays for EP.  相似文献   

17.
Elution of antibodies from a Protein-A column by aqueous arginine solutions   总被引:3,自引:0,他引:3  
Acidic pH is commonly used to elute antibodies from Protein-A affinity column, although low pH may result in aggregation of the proteins. As an alternative, here arginine was tested as an eluent and compared with a more conventional eluent of citrate. Using purified monoclonal antibodies, recovery of antibodies with 0.1M citrate, pH 3.8, was less than 50% and decreased further as the pH was increased to 4.3. At the same pH, the recovery of antibodies was greatly increased with 0.5M arginine and more so with 2M arginine. Even at pH 5.0, 2M arginine resulted in 31% recovery, although the elution under such condition showed extensive tailing. Such tailing was observed at pH 3.8 when 0.1M citrate was used. Size exclusion analysis indicated that the eluted antibodies were mostly monomeric whether eluted with citrate or arginine. This demonstrates the usefulness of arginine as an efficient eluent for Protein-A chromatography.  相似文献   

18.
In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.  相似文献   

19.
Similar to blood type, human plasma haptoglobin (Hp) is classified as 3 phenotypes: Hp 1-1, 2-1, or 2-2. The structural and functional relationship between the phenotypes, however, has not been studied in detail due to the complicated and difficult isolation procedures. This report provides a simple protocol that can be used to purify each Hp phenotype. Plasma was first passed through an affinity column coupled with a high affinity Hp monoclonal antibody. The bound material was washed with a buffer containing 0.2M NaCl and 0.02 M phosphate, pH 7.4, eluted at pH 11, and collected in tubes containing 1M Tris-HCl, pH 6.8. The crude Hp fraction was then chromatographed on a HPLC Superose 12 column in 0.05 M ammonium bicarbonate at a flow rate of 0.5 ml/min. The homogeneity of purified Hp 1-1, 2-1, or 2-2 was greater than 95% as judged by SDS-polyacrylamide gel electrophoresis. Essentially, each Hp isolated was not contaminated with hemoglobin and apolipoprotein A-I as that reported from the other methods, and was able to bind hemoglobin. Neuraminidase treatment demonstrated that the purified Hp possessed a carbohydrate moiety, while Western blot analysis confirmed alpha and beta chains corresponding to each Hp 1-1, 2-1, and 2-2 phenotype. The procedures described here represent a significant improvement in current purification methods for the isolation of Hp phenotypes. Circular dichroic spectra showed that the alpha-helical content of Hp 1-1 (29%) was higher than that of Hp 2-1 (22%), and 2-2 (21%). The structural difference with respect to its clinical relevance is discussed.  相似文献   

20.
In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%–60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号