首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified one frameshift mutation, one splice-site mutation, and two missense mutations in highly conserved residues in ZDHHC9 at Xq26.1 in 4 of 250 families with X-linked mental retardation (XLMR). In three of the families, the mental retardation phenotype is associated with a Marfanoid habitus, although none of the affected individuals meets the Ghent criteria for Marfan syndrome. ZDHHC9 is a palmitoyltransferase that catalyzes the posttranslational modification of NRAS and HRAS. The degree of palmitoylation determines the temporal and spatial location of these proteins in the plasma membrane and Golgi complex. The finding of mutations in ZDHHC9 suggests that alterations in the concentrations and cellular distribution of target proteins are sufficient to cause disease. This is the first XLMR gene to be reported that encodes a posttranslational modification enzyme, palmitoyltransferase. Furthermore, now that the first palmitoyltransferase that causes mental retardation has been identified, defects in other palmitoylation transferases become good candidates for causing other mental retardation syndromes.  相似文献   

2.
3.
Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.  相似文献   

4.
Mutation analysis of UBE3A in Angelman syndrome patients.   总被引:8,自引:0,他引:8  
Angelman syndrome (AS) is caused by chromosome 15q11-q13 deletions of maternal origin, by paternal uniparental disomy (UPD) 15, by imprinting defects, and by mutations in the UBE3A gene. UBE3A encodes a ubiquitin-protein ligase and shows brain-specific imprinting. Here we describe UBE3A coding-region mutations detected by SSCP analysis in 13 AS individuals or families. Two identical de novo 5-bp duplications in exon 16 were found. Among the other 11 unique mutations, 8 were small deletions or insertions predicted to cause frameshifts, 1 was a mutation to a stop codon, 1 was a missense mutation, and 1 was predicted to cause insertion of an isoleucine in the hect domain of the UBE3A protein, which functions in E2 binding and ubiquitin transfer. Eight of the cases were familial, and five were sporadic. In two familial cases and one sporadic case, mosaicism for UBE3A mutations was detected: in the mother of three AS sons, in the maternal grandfather of two AS first cousins, and in the mother of an AS daughter. The frequencies with which we detected mutations were 5 (14%) of 35 in sporadic cases and 8 (80%) of 10 in familial cases.  相似文献   

5.
In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.  相似文献   

6.
We recently identified a differentially expressed gene in implantation stage rabbit endometrium encoding a new member of the ubiquitin-conjugating enzyme family designated UBE2Q2 (also known as UBCi). Its unusually high molecular mass, novel N-terminus extension, and highly selective pattern of mRNA expression suggest a specific function in implantation. This study analyzes its relationship to the E2 ubiquitin-conjugating enzyme superfamily, investigates its enzymatic activity, and examines its localization in implantation site endometrium. Construction of a dendrogram indicated that UBE2Q2 is homologous to the UBC2 family of enzymes, and isoforms are present in a broad range of species. In vitro enzymatic assays of ubiquitin thiolester formation demonstrated that UBE2Q2 is a functional ubiquitin-conjugating enzyme. The Km for transfer of ubiquitin thiolester from E1 to UBE2Q2 is 817 nM compared to 100 nM for other E2 paralogs; this suggests that the unique amino terminal domain of UBE2Q2 confers specific functional differences. Affinity-purified antibodies prepared with purified recombinant UBE2Q2 showed that the protein was undetectable by immunoblot analysis in endometrial lysates from estrous and Day 6(3/4) pregnant (blastocyst attachment stage) rabbits but was expressed in both mesometrial and antimesometrial implantation site endometrium of Day 8 pregnant animals. No expression was detected in adjacent interimplantion sites. Immunohistochemistry demonstrated UBE2Q2 expression exclusively in mesometrial and antimesometrial endometrial luminal epithelial cells of the Day 8 implantation chamber. Immunohistochemical localization of ubiquitin mirrored UBE2Q2 expression, with low-to-undetectable levels in implantation sites of Day 6(3/4) pregnant endometrium but high levels in luminal epithelial cells of Day 8 pregnant endometrium. This implantation site-specific expression of UBE2Q2 in luminal epithelial cells could play major roles in orchestrating differentiation events through the modification of specific protein substrates.  相似文献   

7.
Ubiquitin and other ubiquitin-like proteins play important roles in post-translational modification. They are phylogenetically well-conserved in eukaryotes. Here we report a new ubiquitin-conjugating enzyme E2 cDNA, which containing a ubiquitin-conjugating enzyme UBCc-domain named UBE2AM. Its cDNA is 899 base pairs in length and contains an open reading frame from nucleotide 171 to 632 encoding 153 amino acids. The result of real time RT-PCR showed that UBEA2 M is expressed in most of M. expansa proglottides and over-expressed in the mature proglottides. Comparison of predicted UBE2AM with UBCc (protein) homologues/orthologous from other species revealed identities between species varying from 97.5 to 99.4% at the amino acid level. Phylogenetic analysis showed the UBE2AM is a member of the eukaryotic UBCc superfamily, which have diverged from a common ancestor and the gene is clustered in the same group with the ubiquitin-conjugating enzyme E2A-like protein from Taenia asiatica.  相似文献   

8.
The human UBE2L6 gene encodes UbcH8(Kumar), a ubiquitin-conjugating enzyme (E2) highly simliar in primary structure to UbcH7 which is encoded by UBE2L3. Like UBC4 and UBC5 in yeast, these proteins demonstrate functional redundancy. Herein we report the intron/exon structure of UBE2L6. Comparison of the genomic organization of UBE2L6 with UBE2L3 demonstrates that these genes remain highly conserved at the genomic as well as at the protein level. We also describe the chromosomal localization of UBE2L6, which maps to chromosome 11q12.  相似文献   

9.
The oncogene protein ubiquitin-conjugating enzyme E2T (UBE2T) is reported to be upregulated in hepatocellular carcinoma (HCC) and correlated with poor clinical outcomes of HCC patients. However, the underlying mechanism by which UBE2T exerts its oncogenic function in HCC remains largely unexplored. In this study, in vitro and in vivo experiments suggested that UBE2T promoted HCC development including proliferation and metastasis. GSEA analysis indicated that UBE2T was positively correlated with pyrimidine metabolism, and LC/MS-MS metabolomics profiling revealed that the key products of pyrimidine metabolism were significantly increased in UBE2T-overexpressing cells. UBE2T overexpression led to the upregulation of several key enzymes catalyzing de novo pyrimidine synthesis, including CAD, DHODH, and UMPS. Moreover, the utilization of leflunomide, a clinically approved DHODH inhibitor, blocked the effect of UBE2T in promoting HCC progression. Mechanistically, UBE2T increased Akt K63-mediated ubiquitination and Akt/β-catenin signaling pathway activation. The disruption of UBE2T-mediated ubiquitination on Akt, including E2-enzyme-deficient mutation (C86A) of UBE2T and ubiquitination-site-deficient mutation (K8/14 R) of Akt impaired UBE2T’s effect in upregulating CAD, DHODH, and UMPS. Importantly, we demonstrated that UBE2T was positively correlated with p-Akt, β-catenin, CAD, DHODH, and UMPS in HCC tumor tissues. In summary, our study indicates that UBE2T increases pyrimidine metabolism by promoting Akt K63-linked ubiquitination, thus contributing to HCC development. This work provides a novel insight into HCC development and a potential therapeutic strategy for HCC patients.Subject terms: Liver cancer, Ubiquitylation  相似文献   

10.
Array-based comparative genomic hybridization has proven to be successful in the identification of genetic defects in disorders involving mental retardation. Here, we studied a patient with learning disabilities, retinal dystrophy, and short stature. The family history was suggestive of an X-linked contiguous gene syndrome. Hybridization of full-coverage X-chromosomal bacterial artificial chromosome arrays revealed a deletion of ~1 Mb in Xp11.3, which harbors RP2, SLC9A7, CHST7, and two hypothetical zinc-finger genes, ZNF673 and ZNF674. These genes were analyzed in 28 families with nonsyndromic X-linked mental retardation (XLMR) that show linkage to Xp11.3; the analysis revealed a nonsense mutation, p.E118X, in the coding sequence of ZNF674 in one family. This mutation is predicted to result in a truncated protein containing the Kruppel-associated box domains but lacking the zinc-finger domains, which are crucial for DNA binding. We characterized the complete ZNF674 gene structure and subsequently tested an additional 306 patients with XLMR for mutations by direct sequencing. Two amino acid substitutions, p.T343M and p.P412L, were identified that were not found in unaffected individuals. The proline at position 412 is conserved between species and is predicted by molecular modeling to reduce the DNA-binding properties of ZNF674. The p.T343M transition is probably a polymorphism, because the homologous ZNF674 gene in chimpanzee has a methionine at that position. ZNF674 belongs to a cluster of seven highly related zinc-finger genes in Xp11, two of which (ZNF41 and ZNF81) were implicated previously in XLMR. Identification of ZNF674 as the third XLMR gene in this cluster may indicate a common role for these zinc-finger genes that is crucial to human cognitive functioning.  相似文献   

11.
The Fanconi anemia pathway is required for the efficient repair of damaged DNA. A key step in this pathway is the monoubiquitination of the FANCD2 protein by the ubiquitin ligase (E3) composed of Fanconi anemia core complex proteins. Here, we show that UBE2T is the ubiquitin-conjugating enzyme (E2) essential for this pathway. UBE2T binds to FANCL, the ubiquitin ligase subunit of the Fanconi anemia core complex, and is required for the monoubiquitination of FANCD2 in vivo. DNA damage in UBE2T-depleted cells leads to the formation of abnormal chromosomes that are a hallmark of Fanconi anemia. In addition, we show that UBE2T undergoes automonoubiquitination in vivo. This monoubiquitination is stimulated by the presence of the FANCL protein and inactivates UBE2T. Therefore, UBE2T is the E2 in the Fanconi anemia pathway and has a self-inactivation mechanism that could be important for negative regulation of the Fanconi anemia pathway.  相似文献   

12.
UBE1L2, a novel E1 enzyme specific for ubiquitin   总被引:1,自引:0,他引:1  
UBE1 is known as the human ubiquitin-activating enzyme (E1), which activates ubiquitin in an ATP-dependent manner. Here, we identified a novel human ubiquitin-activating enzyme referred to as UBE1L2, which also shows specificity for ubiquitin. The UBE1L2 sequence displays a 40% identity to UBE1 and also contains an ATP-binding domain and an active site cysteine conserved among E1 family proteins. UBE1L2 forms a covalent link with ubiquitin in vitro and in vivo, which is sensitive to reducing conditions. In an in vitro polyubiquitylation assay, recombinant UBE1L2 could activate ubiquitin and transfer it onto the ubiquitin-conjugating enzyme UbcH5b. Ubiquitin activated by UBE1L2 could be used for ubiquitylation of p53 by MDM2 and supported the autoubiquitylation of the E3 ubiquitin ligases HectH9 and E6-AP. The UBE1L2 mRNA is most abundantly expressed in the testis, suggesting an organ-specific regulation of ubiquitin activation.  相似文献   

13.
A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.  相似文献   

14.
The Angelman syndrome (AS) is caused by genetic abnormalities affecting the maternal copy of chromosome region 15q12. Until recently, the molecular diagnosis of AS relied on the detection of either a deletion at 15q11-13, a paternal uniparental disomy (UPD) for chromosome 15 or imprinting mutations. A fourth class of genetic defects underlying AS was recently described and consists of mutations of the UBE3A gene. The vast majority of mutations reported so far are predicted to cause major disruptions at the protein level. It is unclear whether mutations with less drastic consequences for the gene product could lead to milder forms of AS. We report on our results obtained by screening 101 clinically diagnosed AS patients for mutations in the UBE3A gene. Non-stringent clinical criteria were purposely applied for inclusion of AS patients in this study. The mutation search was carried out by single-strand conformation polymorphism (SSCP), and SSCP/restriction fragment length polymorphism (RFLP) analyses and revealed five novel UBE3A gene mutations as well as three different polymorphisms. All five mutations were detected in patients with typical features of AS and are predicted to cause frameshifts in four cases and the substitution of a highly conserved residue in the fifth. The results we obtained add to the as yet limited number of reports concerning UBE3A gene mutations. Important aspects that emerge from the data available to date is that the four classes of genetic defects known to underlie AS do not appear to cover all cases. The genetic defect underlying approximately 10% of AS cases, including some familial cases, remains unknown.  相似文献   

15.
In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain–containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.  相似文献   

16.
The Fanconi anemia (FA) nuclear core complex and the E2 ubiquitin-conjugating enzyme UBE2T are required for the S phase and DNA damage-restricted monoubiquitination of FANCD2. This constitutes a key step in the FA tumor suppressor pathway, and much attention has been focused on the regulation at this point. Here, we address the importance of the assembly of the FA core complex and the subcellular localization of UBE2T in the regulation of FANCD2 monoubiquitination. We establish three points. First, the stable assembly of the FA core complex can be dissociated of its ability to function as an E3 ubiquitin ligase. Second, the actual E3 ligase activity is not determined by the assembly of the FA core complex but rather by its DNA damage-induced localization to chromatin. Finally, UBE2T and FANCD2 access this subcellular fraction independently of the FA core complex. FANCD2 monoubiquitination is therefore not regulated by multiprotein complex assembly but by the formation of an active E2/E3 holoenzyme on chromatin.  相似文献   

17.
The novel human gene, designated ubiquitin-conjugating enzyme E2Q family member 1 (UBE2Q1) maps to chromosome 1q21.3. The gene has an open reading frame corresponding to 422 amino acids and contains a RWD domain and an E2 ubiquitin conjugating enzyme domain. Here, we investigated the expression levels of both mRNA and protein of UBE2Q1 gene in cancerous versus normal parts of breast specimens from 26 patients. Real-time PCR data showed that the relative expression level of UBE2Q1 mRNA was significantly greater in cancers than in non-cancerous tissues of breast specimens (Mean ± SEM, 0.064 ± 0.015 for cancers and 0.026 ± 0.01 for noncancerous tissues, P < 0.05 Mann–Whitney test). A rabbit polyclonal antibody was generated against an amino acid sequence predicted from the DNA sequence of UBE2Q1 gene. This antibody was used to perform Western blotting on 21 cases in our cohort of breast specimens. Thus, 13 (61.904%) of the cases showed an increase in the UBE2Q1 immunoreactivity in their cancerous tissues as compared with the corresponding normal tissues. This result along with the real-time PCR data shows that the novel human gene, UBE2Q1, is expressed in human breast and may have implications for pathogenesis of breast cancer.  相似文献   

18.
Nonsyndromic low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of hearing loss that affects frequencies at 2,000 Hz and below. Recently, we reported five different heterozygous missense mutations in the Wolfram syndrome gene, WFS1, found to be responsible for LFSNHL in six families. One of the five mutations, A716T, may be a common cause of LFSNHL, as it has been reported in three families to date (Bespalova et al., 2001; Young et al., 2001). We have developed a PCR-based restriction fragment-length polymorphism (RFLP) assay to detect the A716T mutation in a simple, specific test. This method was evaluated with DNA samples from a family in which the A716T mutation was segregating with LFSNHL. This simple assay successfully detected the presence of the A716T mutation in all of the individuals predicted to be affected, based on audiologic results. Therefore, this assay can be routinely used for initial screening of the A716T mutation in patients with LFSNHL, before screening the entire coding region of the WFS1 gene.  相似文献   

19.
Congenital cataract is the most common cause of treatable visual impairment in children worldwide. Mutations in many different genes lead to congenital cataract. Recently, mutations in the receptor tyrosine kinase gene, EPHA2, have been found to cause congenital cataract in six different families. Although these findings have established EPHA2 as a causative gene, the total contribution of mutations in this gene to congenital cataract is unknown. In this study, for the first time, a population-based approach was used to investigate the frequency of disease causing mutations in the EPHA2 gene in inherited cataract cases in South-Eastern Australia. A cohort of 84 familial congenital or juvenile cataract index cases was screened for mutations in the EPHA2 gene by direct sequencing. Novel changes were assessed for segregation with the disease within the family and in unrelated controls. Microsatellite marker analysis was performed to establish any relationship between families carrying the same mutation. We report a novel congenital cataract causing mutation c.1751C>T in the EPHA2 gene and the previously reported splice mutation c.2826-9G>A in two new families. Additionally, we report a rare variant rs139787163 potentially associated with increased susceptibility to cataract. Thus mutations in EPHA2 account for 4.7% of inherited cataract cases in South-Eastern Australia. Interestingly, the identified rare variant provides a link between congenital and age-related cataract.  相似文献   

20.
Some deleterious X-linked mutations may result in a growth disadvantage for those cells in which the mutation, when on the active X chromosome, affects cell proliferation or viability. To explore the relationship between skewed X-chromosome inactivation and X-linked mental retardation (XLMR) disorders, we used the androgen receptor X-inactivation assay to determine X-inactivation patterns in 155 female subjects from 24 families segregating 20 distinct XLMR disorders. Among XLMR carriers, ~50% demonstrate markedly skewed X inactivation (i.e., patterns 80:20), compared with only ~10% of female control subjects (P<.001). Thus, skewed X inactivation is a relatively common feature of XLMR disorders. Of the 20 distinct XLMR disorders, 4 demonstrate a strong association with skewed X inactivation, since all carriers of these mutations demonstrate X-inactivation patterns 80:20. The XLMR mutations are present on the preferentially inactive X chromosome in all 20 informative female subjects from these families, indicating that skewing is due to selection against those cells in which the XLMR mutation is on the active X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号