首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
月桂酸生物印迹对脂肪酶酯化活力的影响   总被引:1,自引:0,他引:1  
生物印迹是改良酶学特性,扩大脂肪酶工业应用领域的新兴技术。本研究结合溶胶-凝胶脂肪酶固定化工艺,以甲基三甲氧基硅烷(MTMS)和四甲氧基硅烷(TMOS)为前驱体,月桂酸为印迹分子,考察了月桂酸生物印迹对脂肪酶PS酯化活力的影响。脂肪酶酯化活力测定及扫描电镜观察表明生物印迹能显著提高脂肪酶的活性及稳定性。印迹体系经正交试验优化获得的最优条件为:水和硅烷摩尔比(R)为12,聚乙二醇(PEG)加入量为120μl,月桂酸加入量为0.15mmol。在最优反应条件下,印迹酶相对于游离酶比活力提高了44.3倍,相对于未印迹固定化酶提高了2.4倍;印迹酶具有较好的热稳定性,在80℃下处理0.5h后,残余酶活分别为58%,而游离酶未检测到活性。  相似文献   

2.
The derivatives of polyethylene glycol (PEG) were prepared by reacting PEG with propylene oxide to enhance its hydrophobicity and introduce a branched structure. The PEG derivatives were activated with cyanuric chloride and used to modify the lipase fromCandida rugosa. The maximum specific activity of lipase modified with the PEG derivatives was about 2-fold of that modified with PEG for the esterification of oleic acid and lauryl alcohol in hexane.  相似文献   

3.
Summary Quantitative esterification of polyethylene glycol (PEG) 400 using oleic acid and Lipozyme was achieved in hexane. The effects of temperature, nature of acyl donor, substrate ratio, enzyme quantity and reaction time upon PEG esterification were examined. Nearly selective production of either PEG monooleate or PEG dioleate was achieved. Lipozyme was still 80% active after five reaction cycles.  相似文献   

4.
In this work, the stabilizing effect of bovine serum albumin (BSA), peptone (PEP), and polyethylene glycol (PEG) during immobilization of Candida antarctica lipase on activated carbon was investigated. The influence of enzyme concentration and type of additive, added during the immobilization procedure, was studied using a 22 factorial central composite design. The goal was to maximize the synthetic activity of butyl butyrate, using butyric acid and butanol as substrate in n-heptane. An increase of 31–58% in the esterification activity was obtained when enzyme concentration on the supernatant was enhanced from 86.50 U m L−1 to 226.80 U mL−1. An enhancement in esterification activity of 38–68.95% was observed, depending on the initial enzyme concentration, when PEP was used instead of BSA. No significant increase in the esterification activity was observed when PEP was replaced by PEG. However, thermal stability tests at 50 °C showed that PEG had a higher stabilizing effect.  相似文献   

5.
Summary The kinetics of acetyl-L-tryptophan esterification by ethanol in an organic solvent immiscible with water (chloroform) and catalyzed by chymotrypsin adsorbed from aqueous solution to a polyethylene terephthalate copolymer (SORSILEN) was examined by HPLC. The esterification yield (in %) increased with the decreasing concentration of the substrate and with the increasing activity of immobilized chymotrypsin. It has been shown that there was no chymotrypsin leakage from the aqueous phase on the support surface during the catalysis.  相似文献   

6.
Enzymatic acrylation is a process of potentially strong interest to the chemical industry. Direct esterification involving acrylic acid is unfortunately rather slow, with inhibition phenomena appearing at high acid concentrations. In the present study the acrylation of 1-octanol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was shown to be as much as an order of magnitude faster when ethyl acrylate served as the donor of the acrylic group. Water activity is a key parameter for optimizing the rate of ester synthesis. The optimum water activity for the esterification of octanol by acrylic acid was found to be 0.75, that for its esterification by propionic acid to be 0.45 and the transesterification involving ethyl acrylate to be fastest at a water activity of 0.3. The reasons for these differences in optimum water activity are discussed in terms of enzyme specificity, substrate solvation, and mass transfer effects.  相似文献   

7.
Rice bran lipase (RBL) was delipidated to enhance its stability in organic solvent and its esterification activity at elevated temperature. The esterification activity of delipidated RBL increased as temperature was increased from 45 to 65°C. The esterification activity of delipidated RBL at 65°C was about 14 times greater than that of the non-delipidated RBL. As temperature was further increased to 75°C, the non-delipidated RBL lost all esterification activity, whereas the delipidated RBL retained approximately 48% of its esterilication activity. The delipidated RBL maintained a relative esterification activity greater than 80% after 16 h of incubation in hexane, whereas the non-delipidated RBL maintained a relative esterification activity of only 50%. A method for production of acylglycerol using delipidated RBL to esterify palm oil fatty acid distillate (PFAD) with glycerol in hexane was successfully developed. The effects of reaction temperatures and type of water removal agents (silica gel and molecular sieve) on the degree of esterification were also examined. A 4 h reaction at 65°C, catalyzed by delipidated RBL and using silica gel as the water removal agent resulted in 53.8% esterification. Thin layer chromatography analysis suggested that the esterified product was primarily comprised of mono-and di-acylglycerols.  相似文献   

8.
The enzymatic esterification of dihydrocaffeic acid with linoleyl alcohol, using immobilized lipases (Lipozyme IM 20 and Novozym 435), was investigated in selected organic solvent media. Novozym 435 was found to be more efficient for catalyzing the esterification reaction. The highest enzymatic activity of 0.89 μmol esterified linoleyl alcohol/g solid enzyme/min was obtained in a hexane/2-butanone mixture of 75:25 (v/v), with an esterification yield of 75%; however, an increase in the 2-butanone proportion in the mixture up to 50% (v/v) resulted in a decrease in enzymatic activity and esterification yield to 0.38 μmol esterified linoleyl alcohol/g solid enzyme/min and 40%, respectively. The maximum esterification yield of 99.3% was obtained with a dihydrocaffeic acid to linoleyl alcohol ratio of 1:8. The electrospray ionization-mass spectroscopic structural analysis of the end products confirmed the biosynthesis of dihydrocaffeic acid ester of linoleyl alcohol, which demonstrated an anti-radical activity using 2,2-diphenyl-1-picrylhydrazyl as a radical model.  相似文献   

9.
The effects of eicosapentaenoic acid on synthesis and secretion of cholesterol and cholesterol ester by cultured rat hepatocytes were studied. In the presence of eicosapentaenoic acid cellular cholesterol esterification was decreased by 50-75% compared to oleic acid as measured by radioactive precursors and mass. Secretion of cholesterol ester was reduced by 50-60% in the presence of eicosapentaenoic acid as evaluated by radiolabeled fatty acids, mevalonolactone, and mass measurement. Oleic, palmitic, and stearic acid increased, whereas eicosapentaenoic and docosahexaenoic acid decreased synthesis and secretion of cholesterol ester as compared to a fatty acid-free control. Cellular and secreted free cholesterol were unaffected by eicosapentaenoic acid in comparison with oleic acid. The reduced cholesterol esterification was observed within 1 h and lasted for at least 20 h. Eicosapentaenoic acid caused lower cholesterol esterification than oleic acid in the concentration range 0.2-1.0 mM fatty acid and reduced the stimulatory effect of oleic acid on cholesterol ester formation. Cholesterol esterification and release of cholesterol ester were markedly increased by 25-hydroxycholesterol in the presence of eicosapentaenoic acid as well as oleic acid. Experiments with liver microsomes revealed that radioactive eicosapentaenoic acid and eicosapentaenoyl-CoA were poorer substrates (7-30%) for cholesterol esterification than oleic acid and oleoyl-CoA. Reduced formation of cholesterol ester was also observed when eicosapentaenoyl-CoA was given together with labeled oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linolenoyl-CoA, and arachidonoyl-CoA had no inhibitory effect. In conclusion, eicosapentaenoic acid reduced cellular cholesterol esterification by inhibiting the activity of acyl-CoA:cholesterol acyltransferase. The lowered cholesterol esterification caused by eicosapentaenoic acid secondly decreased secretion of very low density lipoprotein cholesterol ester.  相似文献   

10.
In the present study the esterification of the OH groups of resveratrol, caffeic acid, ferulic acid, and β‐sitosterol with an antioxidant polyconjugated fatty acid, (2E,4E,6E)‐octa‐2,4,6‐trienoic acid, was achieved. As the selective esterification of OH groups of natural compounds can affect their biological activity, a selective esterification of resveratrol and caffeic acid was performed by an enzymatic approach. The new resulting compounds were characterized spectroscopically (FT‐IR, NMR mono, and bidimensional techniques); when necessary the experimental data were integrated by quantum chemical calculations. The antioxidant, anti‐inflammatory and proliferative activity was evaluated. The good results encourage the use of these molecules as antioxidant and/or anti‐inflammatory agents in dermocosmetic application.  相似文献   

11.
L-ascorbyl acetate was synthesized through lipase-catalyzed esterification using Lipozyme TLIM and Novozym 435. Four solvents, including methanol, ethanol, acetonitrile, and acetone were investigated for the reaction, and acetone and acetonitrile were found to be suitable reaction media. The influences of several parameters such as water activity (a w), substrate molar ratio, enzyme loading, and reaction temperature on esterification of L-ascorbic acid were systematically and quantitatively analyzed. Through optimizing the reaction, lipase-catalyzed esterification of L-ascorbic acid gave a maximum conversion of 99%. The results from using Lipozyme TLIM and Novozym 435 as biocatalysts both showed that a w was an important factor for the conversion of L-ascorbic acid. The effect of pH value on lipase-catalyzed L-ascorbic acid esterification in acetone was also investigated. Furthermore, results from a kinetic characterization of Lipozyme TLIM were compared with those for Novozym 435, and suggested that the maximum reaction rate for Lipozyme TLIM was greater than that for Novozym 435, while the enzyme affinity for substrate was greater for Novozym 436.  相似文献   

12.
Cellular retinol-binding protein, type II (CRBP (II] is an abundant protein of the mature enterocytes of the small intestine. It has been shown to direct retinol to an acyl-CoA-independent esterifying activity that utilizes an endogenous acyl donor (Ong, D.E., Kakkad, B., and MacDonald, P.N. (1987) J. Biol. Chem. 262, 2729-2736). Here we report that this activity in intestinal microsomes will catalyze the transfer of acyl moieties from exogenous phosphatidylcholine (PC) to retinol-CRBP(II) to produce retinyl esters. The microsomal activity displayed positional selectivity as only the sn-1-acyl moiety of PC was transferred to retinol-CRBP(II). The retinyl ester synthase was selective for PC substrates as acyl transfer from phosphatidylethanolamine, phosphatidic acid, or free fatty acid to retinol-CRBP(II) was not observed. Some formation of retinyl esters was observed with exogenous acyl-CoA, but the amount produced was considerably lower than ester formation from exogenous PC and could be shown to be due to a different enzyme activity. Inhibitor studies clearly distinguished between the enzyme activities responsible for the acyl-CoA-dependent esterification and the phosphatidylcholine-dependent esterification of retinol. The results provide strong evidence that retinol-CRBP(II) esterification in the intestine proceeds via a phosphatidylcholine-dependent transacylase mechanism similar to that established for the esterification of cholesterol by lecithin-cholesterol acyltransferase.  相似文献   

13.
The relationship between pectin structure and the antimicrobial activity of nisin‐loaded pectin particles was examined. The antimicrobial activity of five different nisin‐loaded pectin particles, i.e., nisin‐loaded high methoxyl pectin, low methoxyl pectin, pectic acid, dodecyl pectin with 5.4 and 25% degree of substitution were tested in the pH range of 4.0–7.0 by agar‐diffusion assay and agar plate count methods. It was found that the degree of esterification of carboxyl group of galacturonic acid in pectin molecule is important for the antimicrobial activity of nisin‐loaded pectin particles. Nisin‐loaded particles prepared using pectic acid or the pectin with low degree of esterification exhibit higher antimicrobial activity than nisin‐loaded high methoxyl pectin particles. Pectins with free carboxyl groups or of low degree of esterification are the most suitable for particles preparation. Moreover, nisin‐loaded pectin particles were active at close to neutral or neutral pH values. Therefore, they could be effectively applied for food preservation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:245–251, 2017  相似文献   

14.
Lipase from Pseudomonas fragi 22.39B was modified with polyethylene glycol. The modified lipase (PEG-lipase) was soluble and active in organic solvents such as benzene and 1,1,1-trichloroethane. PEG-lipase catalyzed esterification of chiral secondary alcohols with fatty acids in benzene and exhibited preference for R isomers over S isomers. Km and Vmax values for each isomer of various alcohols were obtained by kinetic study of the esterification in benzene. PEG-lipase-catalyzed esterification leads to optical resolution of a racemic alcohol.  相似文献   

15.
Rabbit and human tissues contain substantial amounts of an unusual lipid, a fatty acid ester of a pentacyclic triterpene, that is a potent in vitro inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). A possible origin of the triterpene ester is via dietary absorption of plant triterpenes (which have a similar structure to the triterpene moiety of the animal triterpene ester), followed by fatty acid esterification of the triterpene in animal tissues. To support this idea, homogenates of rabbit and human enterocytes and liver are now shown to contain an acyl-CoA:triterpene acyltransferase activity (ATAT) which esterifies triterpene to a fatty acid. The enzyme activity was stimulated by exogenous triterpene and required ATP and coenzyme A when fatty acid was used as substrate; ATP and coenzyme A were not required when fatty acyl-CoA was used. ATAT was not inhibited by two structurally different ACAT inhibitors, which may indicate that ACAT and ATAT are different enzymes. Rat enterocytes and liver contained very little ATAT activity, consistent with the finding that rat liver contained very little triterpene ester. To establish that triterpene esterification occurs in vivo, [3H]triterpene was shown to be incorporated into triterpene ester in several organs and tissues from a rabbit given a gastric bolus of the labeled triterpene. These data provide support for the hypothesis that triterpene esters in animal tissues arise from the dietary absorption of triterpenes followed by the esterification of the triterpenes by an enzymatic activity in the animal tissues.  相似文献   

16.
1. Age-related changes in the specific activity of palmitoyl-CoA synthetase, sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15) and the esterification of [3H]palmitate into endogenous lipid in the microsomal fraction from rabbit brain have been determined throughout development. 2. The increased specific activity of sn-glycerol 3-phosphate acyltransferase at the onset of myelination (rising in parallel with other lipogenic enzymes) is consistent with a direct role of the acyltransferase in promoting the accumulation of cerebral lipid. In adult brain microsomes, although the specific activity was low, the total activity was only 20% lower than during active myelination. 3. Palmitoyl-CoA, synthesized by the palmitoyl-CoA synthetase in the microsomal membrane, was the preferred substrate for the esterification of sn-glycerol 3-phosphate. There was no evidence for a pool of palmitoyl-CoA formed from palmitate. 4. The esterification of [3H]palmitate into membrane-bound lipid remained high throughout development and may be part of an acyl-exchange cycle via lysophospholipids. [3H]palmitate was incorporated into both neutral lipids and phospholipids, while phosphatidic acid was the major product of sn-[1(3)-3H]-glycerol-3-phosphate esterification. 5. The microsomal fraction contained a pool of unesterified fatty acid, which was activated and esterified into sn-glycerol 3-phosphate.  相似文献   

17.
Epoxy alkylstearates were synthesized by lipase catalysed esterification and perhydrolysis followed by epoxidation of oleic acid in a one-pot process. Immobilized Candida antarctica lipase (Novozym®435) was used as the catalyst. The esterification reaction occurred relatively quickly and was followed by epoxidation of the alkyl ester and the remaining fatty acid. Higher degree of esterification was achieved with n-octanol, n-hexanol and n-butanol as compared to that with ethanol and iso-propanol. The rate and yield of epoxidation was enhanced with iso-propanol but was lowered with the other alcohols. The lipase suffered significant loss in activity during the reaction primarily due to hydrogen peroxide. The presence of alcohols, in particular ethanol, further contributed to the enzyme inactivation. The epoxidation reaction could be improved by step-wise addition of the lipase.  相似文献   

18.
《Process Biochemistry》2004,39(7):847-853
The usefulness of several statistical designs in experimental optimisation including Box-Behnken, Central Composite Rotatable and Plackett–Burman designs in lipase catalysed esterification reactions is presented. Analyses of several response surface plots obtained by employing statistical designs in lipase catalysed esterification reactions have indicated that such plots could be grouped into four types to explain esterification behaviour in the presence of different kinds of substrates and reaction conditions. Similarly, a Plackett–Burman design helps in the selection of the most probable organic acid or alcohol in a mixture, for a facile esterification reaction. Predominant acid binding in preference to alcohol gives rise to dome-shaped response surface plots. Predominant alcohol binding in preference to acid give rise to inverted dome-shaped plots. The competitive and inhibitory nature of substrates are brought out clearly in response surface plots. Rate plots show linear relationships between time and substrate with smooth surfaces within the limits of the variables employed. There are other uneven plots, which reflect the effect of variables like buffer pH, buffer volume and temperature on the activity of lipase employed. The stability of lipases under drastic esterification conditions of temperature and solvents was also studied.  相似文献   

19.
Thermomyces lanuginosus lipase (Lipozyme TLIM)-catalyzed esterification of l-ascorbic acid was studied. It was suggested that Lipozyme TLIM was a suitable biocatalyst for enzymatic esterification of l-ascorbic acid. Three solvents were investigated for the reaction, and acetone was found to be a suitable reaction medium. Furthermore, it was found that water activity could notably affect the conversion. Moreover, pH memory of Lipozyme TLIM lipase for catalyzing l-ascorbic acid esterification in acetone was observed and the effect of pH on the reaction was estimated. In addition, the influences of other parameters such as substrate mole ratio, enzyme loading, and reaction temperature and reusability of lipase on esterification of l-ascorbic acid were also analyzed systematically and quantitatively. Kinetic characterization of Lipozyme TLIM showed that K m,a and V max were 80.085 mM and 0.747 mM min−1, respectively. As a result, Lipozyme TLIM-catalyzed esterification of l-ascorbic acid gave a maximum conversion of 99%.  相似文献   

20.
黄晶  袁丽红  孙镇 《微生物学报》2011,51(4):488-494
[目的]分离筛选具有脂解麻疯树油能力的脂肪酶产生菌株,为以麻疯树油为原料酶法生产生物柴油奠定基础.[方法]以麻疯树油为唯一碳源,从麻疯树种子粉末处理过的土壤中分离筛选出1株具有脂解疯树油能力的脂肪酶产生菌,考察该菌株及其脂肪酶对有机溶剂耐受性以及脂肪酶催化酯化和转酯反应的能力,并通过生理生化特征和16S rDNA序列分...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号