首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spindle microtubules play an important role in the mechanisms that control the timing of cell cycle events in the eggs of the sea urchins L. variegatus and L. pictus. However, recent work which used colchicine to block microtubule assembly in the eggs of two other echinoderms, S. purpuratus and D. excentricus, has raised serious questions about the generality of this role for spindle microtubules. Thus, we have systematically examined the role of spindle microtubules in the timing of the cell cycle in the fertilized eggs of these latter species. We treated eggs of both species with 5-10 microM Colcemid for several minutes starting 30 min after fertilization to completely prevent spindle microtubule assembly for several h. We used Colcemid, instead of colchicine, because it is effective at lower doses and, at these doses, shows no detectable toxic side effects. We compared for control and treated eggs the time course of nuclear envelope breakdown/reformation and DNA synthesis. We found for both species that the eggs continue to cycle without spindle microtubules; mitosis is up to twice the normal duration while interphase remains essentially unaffected. To test for the possible toxic side effects of the 1-2 mM colchicine used earlier on S. purpuratus and D. excentricus, we treated eggs of these two species, and also those of L. variegatus, with 1 mM lumi-colchicine. This photo-inactivated form of colchicine, which does not bind to tubulin, substantially prolongs mitosis and, to a lesser extent, interphase. Thus, the results of the earlier work are most easily explained by the combination of specific and nonspecific effects of the 1-2 mM colchicine used. Our present results indicate that the importance of spindle microtubules in the mechanisms that control the timing of the mitosis portion of the cell cycle is a general phenomenon.  相似文献   

2.
Role of spindle microtubules in the control of cell cycle timing   总被引:14,自引:10,他引:4       下载免费PDF全文
Sea urchin eggs are used to investigate the involvement of spindle microtubules in the mechanisms that control the timing of cell cycle events. Eggs are treated for 4 min with Colcemid at prophase of the first mitosis. No microtubules are assembled for at least 3 h, and the eggs do not divide. These eggs show repeated cycles of nuclear envelope breakdown (NEB) and nuclear envelope reformation (NER). Mitosis (NEB to NER) is twice as long in Colcemid-treated eggs as in the untreated controls. Interphase (NER to NEB) is the same in both. Thus, each cycle is prolonged entirely in mitosis. The chromosomes of treated eggs condense and eventually split into separate chromatids which do not move apart. This "canaphase" splitting is substantially delayed relative to anaphase onset in the control eggs. Treated eggs are irradiated after NEB with 366-nm light to inactivate the Colcemid. This allows the eggs to assemble normal spindles and divide. Up to 14 min after NEB, delays in the start of microtubule assembly give equal delays in anaphase onset, cleavage, and the events of the following cell cycle. Regardless of the delay, anaphase follows irradiation by the normal prometaphase duration. The quantity of spindle microtubules also influences the timing of mitotic events. Short Colcemid treatments administered in prophase of second division cause eggs to assemble small spindles. One blastomere is irradiated after NEB to provide a control cell with a normal-sized spindle. Cells with diminished spindles always initiate anaphase later than their controls. Telophase events are correspondingly delayed. This work demonstrates that spindle microtubules are involved in the mechanisms that control the time when the cell will initiate anaphase, finish mitosis, and start the next cell cycle.  相似文献   

3.
We have used a new cinemicroscopy technique in combination with antitubulin immunofluorescence microscopy to investigate the timing of mitotic events in cells of the fission yeast Schizosaccharomyces pombe having lengths at division between 7 and 60 microns. Wild-type fission yeast cells divide at a length of 14 microns. Separation of daughter nuclei (anaphase B) proceeds at a rate of 1.6 +/- 0.2 microns min-1, until the spindle extends the length of the cell. Coincident with spindle depolymerization, the nuclei reverse direction and take up positions that will become the center of the two daughter cells. This post-mitotic nuclear migration occurs at a rate of 1.4 +/- 0.5 microns-1. In cells in which the weel+ gene is overexpressed fivefold and that have an average length at mitosis of 28 microns, the rate of nuclear separation was only slightly reduced but, as spindles in these cells measure 20-22 microns, the duration of anaphase B was extended by approximately 40%. By contrast, in the mutant weel.50, which divides at 7 microns, both the rate and duration of anaphase B were indistinguishable from wild type. Nuclei reach the ends of these cells earlier but remain there until a point corresponding to the time of postmitotic nuclear migration in wild type. Thus, the events of mitosis can be extended but not abbreviated. These results are discussed in terms of a mitotic termination control that monitors many different events, one of which is spindle elongation.  相似文献   

4.
Mitotic spindles constitute the machinery responsible for equidistribution of the genetic material into each daughter cell during cell division. They are transient and hence quite labile structures, changing their morphology even while performing their function. Biochemical, immunological and genetic analyses of mitotic cells have allowed us to identify a variety of molecules that are recruited to form the spindle at the onset of mitosis. Evaluation of the roles of these molecules in both the formation and in the dynamics of spindle microtubules should be important for understanding the molecular basis of mitosis and its regulation. We have recently identified a novel mitosis-specific microtubule-associated protein (MAP) using a monoclonal antibody probe raised against the mitotic spindles isolated from cultured mammalian cells. This 95/105 kDa antigen represents a unique component of the spindle distinct from any of the other MAPs reported so far. Antibody microinjection resulted in mitotic inhibition in a stage-specific and dose-dependent manner, indicating that the protein is an essential spindle component.  相似文献   

5.
Cell polarity is an essential feature of many animal cells. It is critical for epithelial formation and function, for correct partitioning of fate-determining molecules, and for individual cells to chemotax or grow in a defined direction. For some of these processes, the position and orientation of the mitotic spindle must be coupled to cell polarity for correct positioning of daughter cells and inheritance of localised molecules. Recent work in several different systems has led to the realisation that similar mechanisms dictate the establishment of polarity and subsequent spindle positioning in many animal cells. Microtubules and conserved PAR proteins are essential mediators of cell polarity, and mitotic spindle positioning depends on heterotrimeric G protein signalling and the microtubule motor protein dynein.  相似文献   

6.
The serine protease inhibitor N-α-tosyl-ε-phenylalanyl chloromethyl ketone (TPCK) has been long used in studies of cellular processes including apoptosis. Depending on the experimental conditions, TPCK either induces or inhibits changes associated with apoptosis but there has been little progress in identifying the relevant targets for TPCK. Our group recently showed that the largest subunit of the RNA polymerase II is one of the intracellular targets of TPCK. The complex effects of TPCK on apoptosis, however, suggested the existence of additional apoptosis-relevant targets in cells. Using our unique polyclonal anti-tosyl antibody, here we report the identification of the mitotic spindle as another intracellular target for TPCK. We also provide data that TPCK-mediated labeling of the mitotic spindle correlates with cell cycle arrest in prometaphase.  相似文献   

7.
Kinesin-like proteins are integral to formation and function of a conserved mitotic spindle apparatus that directs chromosome segregation and precedes cell division. Ubiquitous to the mechanism of spindle assembly and stability are balanced Kinesin-5 promoting and Kinesin-14 opposing forces. Distinct Kinesin-14 roles in bipolarity in eukaryotes have not been shown, but are suggested by γ-tubulin-based pole interactions that affect establishment and by microtubule cross-linking and sliding that maintain bipolarity and spindle length. Distinct roles also imply specialized functional domains. By cross-species analysis of compatible mechanisms in establishing mitotic bipolarity we demonstrate that Kinesin-14 human HSET (HsHSET) functionally replaces Schizosaccharomyces pombe Pkl1 and its action is similarly blocked by mutation in a Kinesin-14 binding site on γ-tubulin. Drosophila DmNcd localizes preferentially to bundled interpolar microtubules in fission yeast and does not replace SpPkl1. Analysis of twenty-six Kinesin-14 derivatives, including Tail, Stalk or Neck-Motor chimeras, for spindle localization, spindle assembly and mitotic progression defined critical domains. The Tail of SpPkl1 contains functional elements enabling its role in spindle assembly that are distinct from but transferable to DmNcd, whereas HsHSET function utilizes both Tail and Stalk features. Our analysis is the first to demonstrate distinct mechanisms between SpPkl1 and DmNcd, and reveal that HsHSET shares functional overlap in spindle pole mechanisms.  相似文献   

8.
In Caulobacter crescentus, a complex regulatory network integrates temporal and spatial information to control the ordered progression of the cell cycle, and to synchronize cell proliferation with development. Periodicity includes the timed synthesis, activation or destruction of key regulatory proteins, which activate a large number of genes at the appropriate time of the cell cycle. Checkpoints serve to couple cell division and polar development to the replication and segregation state of the chromosome. Asymmetrically positioned regulatory components are involved in the sequential positioning of polar organelles. New work sheds light on the spatial organization of cellular components involved in cell cycle progression and polar differentiation, and starts to define the molecular nature of checkpoints involved in cell cycle control and development.  相似文献   

9.
Centrosomes of vertebrate cells and spindle pole bodies (SPBs) of fungi were first recognized through their ability to organize microtubules. Recent studies suggest that centrosomes and SPBs also have a function in the regulation of cell cycle progression, in particular in controlling late mitotic events. Regulators of mitotic exit and cytokinesis are associated with the SPB of budding and fission yeast. Elucidation of the molecular roles played by these regulators is helping to clarify the function of the SPB in controlling progression though mitosis.  相似文献   

10.
In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.  相似文献   

11.
Mutations in the p53 tumor suppressor gene locus predispose human cells to chromosomal instability. This is due in part to interference of mutant p53 proteins with the activity of the mitotic spindle and postmitotic cell cycle checkpoints. Recent data demonstrates that wild type p53 is required for postmitotic checkpoint activity, but plays no role at the mitotic spindle checkpoint. Likewise, structural dominant p53 mutants demonstrate gain-of-function properties at the mitotic spindle checkpoint and dominant negative properties at the postmitotic checkpoint. At mitosis, mutant p53 proteins interfere with the control of the metaphase-to-anaphase progression by up-regulating the expression of CKs1, a protein that mediates activatory phosphorylation of the anaphase promoting complex (APC) by Cdc2. Cells that carry mutant p53 proteins overexpress CKs1 and are unable to sustain APC inactivation and mitotic arrest. Thus, mutant p53 gain-of-function at mitosis constitutes a key component to the origin of chromosomal instability in mutant p53 cells.  相似文献   

12.
We have previously shown that the tobacco cyclin B1;1 protein accumulates during the G2 phase of the cell cycle and is subsequently destroyed during mitosis. Here, we investigated the sub-cellular localisation of two different B1-types and one A3-type cyclin during the cell cycle by using confocal imaging and differential interference contrast (DIC) microscopy. The cyclins were visualised as GFP-tagged fusion proteins in living tobacco cells. Both B1-type cyclins were found in the cytoplasm and in the nucleus during G2 but when cells entered into prophase, both cyclins became associated with condensing chromatin and remained on chromosomes until metaphase. As cells exited metaphase, the B1-type cyclins became degraded, as shown by time-lapse images. A stable variant of cyclin B1;1-GFP fusion protein, in which the destruction box had been mutated, maintained its association with the nuclear material at later phases of mitosis such as anaphase and telophase. Furthermore, we demonstrated that cyclin B1;1 protein is stabilised in metaphase-arrested cells after microtubule destabilising drug treatments. In contrast to the B1-type cyclins, the cyclin A3;1 was found exclusively in the nucleus in interphase cells and disappeared earlier than the cyclin B1 proteins during mitosis.  相似文献   

13.
Asymmetric division is a fundamental mechanism of generating cell diversity during development. One of its hallmarks is asymmetric localization during mitosis of proteins that specify daughter cell fate. Studies in Drosophila show that subcellular localization of many proteins required for asymmetric division of neuronal progenitors correlates with progression through mitosis. Yet, how cell cycle and asymmetric division machineries cooperate remains unclear. Recent data show that (1) key cell cycle regulators are required for asymmetric localization of cell fate determinants and for cell fate determination and (2) molecules that mediate asymmetric division can also act to modulate proliferation potential of progenitor cells.  相似文献   

14.
Error-free chromosome segregation requires stable attachment of sister kinetochores to the opposite spindle poles (amphitelic attachment). Exactly how amphitelic attachments are achieved during spindle assembly remains elusive. We employed photoactivatable GFP and high-resolution live-cell confocal microscopy to visualize complete 3D movements of individual kinetochores throughout mitosis in nontransformed human cells. Combined with electron microscopy, molecular perturbations, and immunofluorescence analyses, this approach reveals unexpected details of chromosome behavior. Our data demonstrate that unstable lateral interactions between kinetochores and microtubules dominate during early prometaphase. These transient interactions lead to the reproducible arrangement of chromosomes in an equatorial ring on the surface of the nascent spindle. A computational model predicts that this toroidal distribution of chromosomes exposes kinetochores to a high density of microtubules which facilitates subsequent formation of amphitelic attachments. Thus, spindle formation involves a previously overlooked stage of chromosome prepositioning which promotes formation of amphitelic attachments.  相似文献   

15.
The cell cycle of the marine centric diatom Stephanopyxis turris consists of a series of spatially and temporally well-ordered events. We have used immunofluorescence microscopy to examine the role of cytoplasmic microtubules in these events. At interphase, microtubules radiate out from the microtubule-organizing center, forming a network around the nucleus and extending much of the length and breadth of the cell. As the cell enters mitosis, this network breaks down and a highly ordered mitotic spindle is formed. Peripheral microtubule bundles radiate out from each spindle pole and swing out and away from the central spindle during anaphase. Treatment of synchronized cells with 2.5 X 10(-8) M Nocodazole reversibly inhibited nuclear migration concurrent with the disappearance of the extensive cytoplasmic microtubule arrays associated with migrating nuclei. Microtubule arrays and mitotic spindles that reformed after the drug was washed out appeared normal. In contrast, cells treated with 5.0 X 10(-8) M Nocodazole were not able to complete nuclear migration after the drug was washed out and the mitotic spindles that formed were multipolar. Normal and multipolar spindles that were displaced toward one end of the cell by the drug treatment had no effect on the plane of division during cytokinesis. The cleavage furrow always bisected the cell regardless of the position of the mitotic spindle, resulting in binucleate/anucleate daughter cells. This suggests that in S. turris, unlike animal cells, the location of the plane of division is cortically determined before mitosis.  相似文献   

16.
As a fundamental process of development, cell proliferation must be coordinated with other processes such as fate differentiation. Through statistical analysis of individual cell cycle lengths of the first 8 out of 10 rounds of embryonic cell division in Caenorhabditis elegans, we identified synchronous and invariantly ordered divisions that are tightly associated with fate differentiation. Our results suggest a three-tier model for fate control of cell cycle pace: the primary control of cell cycle pace is established by lineage and the founder cell fate, then fine-tuned by tissue and organ differentiation within each lineage, then further modified by individualization of cells as they acquire unique morphological and physiological roles in the variant body plan. We then set out to identify the pace-setting mechanisms in different fates. Our results suggest that ubiquitin-mediated degradation of CDC-25.1 is a rate-determining step for the E (gut) and P3 (muscle and germline) lineages but not others, even though CDC-25.1 and its apparent decay have been detected in all lineages. Our results demonstrate the power of C. elegans embryogenesis as a model to dissect the interaction between differentiation and proliferation, and an effective approach combining genetic and statistical analysis at single-cell resolution.  相似文献   

17.
To verify non-random positioning and to define the stability of the mitotic spindle orientation in neuroepithelial cells of mouse foetuses, computer - assisted morphometric analysis at the light microscopy level was performed. It was confirmed that the mitotic spindle axis is positioned non-randomly in relation to the cell polarity axis and could be displaced only within a narrow range. This orientation was found to be attained at metaphase and it does not change until telophase is completed. However, in relation to the long axis of the neural tube the mitotic spindle axis was found to be positioned randomly. In the light of these findings centrosome movement and positioning are discussed.  相似文献   

18.
Cytoplasmic dynein plays a role in mammalian mitotic spindle formation   总被引:25,自引:21,他引:25       下载免费PDF全文
The formation and functioning of a mitotic spindle depends not only on the assembly/disassembly of microtubules but also on the action of motor enzymes. Cytoplasmic dynein has been localized to spindles, but whether or how it functions in mitotic processes is not yet known. We have cloned and expressed DNA fragments that encode the putative ATP- hydrolytic sites of the cytoplasmic dynein heavy chain from HeLa cells and from Dictyostelium. Monospecific antibodies have been raised to the resulting polypeptides, and these inhibit dynein motor activity in vitro. Their injection into mitotic mammalian cells blocks the formation of spindles in prophase or during recovery from nocodazole treatment at later stages of mitosis. Cells become arrested with unseparated centrosomes and form monopolar spindles. The injected antibodies have no detectable effect on chromosome attachment to a bipolar spindle or on motions during anaphase. These data suggest that cytoplasmic dynein plays a unique and important role in the initial events of bipolar spindle formation, while any later roles that it may play are redundant. Possible mechanisms of dynein's involvement in mitosis are discussed.  相似文献   

19.
The cell division apparatus is assembled at different stages of the cell cycle in different eukaryotic organisms. Mechanisms exist in all organisms, however, to ensure that the cell division apparatus and the mitotic spindle are aligned perpendicular to each other. Such an alignment ensures that each daughter cell receives a nucleus and that the cell division apparatus does not cleave and destroy the genetic material. The interaction(s) of astral microtubules with the cell cortex appears to play an important role in establishing perpendicularity between chromosome segregation and cell division machinery.  相似文献   

20.
Stabilization of spindle microtubules during anaphase is essential for proper chromosome segregation. Fin1 is a budding yeast protein that localizes to the poles and microtubules of the spindle during anaphase and contributes to spindle stability. The N-terminal half of Fin1 is phosphorylated at multiple sites by the cyclin-dependent kinase Clb5-Cdk1, and dephosphorylation in anaphase triggers its localization to the spindle. The C-terminal half of Fin1 contains coiled-coil motifs that are required for its self-association. Here we investigated the functional importance of the two regions of Fin1. Fin1 mutants lacking the C-terminal coiled-coil domains localized to spindle pole bodies but not along spindle microtubules. These mutants failed to self-associate and displayed reduced binding to microtubules in vitro but were functional in vivo and stabilized anaphase spindles when dephosphorylated. Deletion of the Fin1 C terminus suppressed the lethal phenotypes of the phospho-mutant Fin15A. Our findings suggest that the N-terminal region of Fin1 is sufficient for its regulated function as a spindle-stabilizing factor and that this function involves association with the spindle pole body. The ability of the C-terminal region to promote Fin1 self-association and microtubule binding may underlie the lethal effects of the deregulated Fin15A mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号