首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effective rate of dissociation of 1-N6-ethenoadenosine diphosphate (epsilon ADP) from the regulated actin X subfragment 1 X epsilon ADP complex of rabbit skeletal muscle is approximately 10-15 times smaller in the absence of calcium ion compared to the presence of calcium ion. The decrease in fluorescence emission with dissociation of the bound epsilon ADP fitted two exponential terms. The evidence is consistent with a kinetic scheme in which two first-order transitions precede the dissociation step: (Formula: see text) where D is epsilon ADP, A is regulated actin, M is subfragment 1, the asterisks refer to the degree of fluorescence enhancement, and AM(D) is a collision complex in equilibrium with free epsilon ADP. Both rate constants k-2 and k-1 were reduced approximately 15-fold in the absence of calcium ion. The rate constants for the dissociation of epsilon ATP, epsilon ADP X Pi, formed in the enzyme cycle, and epsilon ADP are all reduced in the absence of calcium ion; consequently, the primary effect in calcium regulation of the actin-subfragment 1 ATPase is on the rate constant of a transition (or transitions) between actomyosin-nucleoside phosphate complexes.  相似文献   

2.
The rates of the elementary steps of the actomyosin ATPase reaction were measured using the myosin subfragment-1 of porcine left ventricular muscle. The results could be explained only by the two-route mechanism for actomyosin ATPase (Inoue, Shigekawa, & Tonomura (1973) J. Biochem. 74, 923-934), in which ATP is hydrolyzed via routes with or without accompanying dissociation of actomyosin. The dependence on the F-actin concentration of the rate of the acto-S-1 ATPase reaction in the steady state was measured in 5 mM KCl at 20 degrees C. The maximal rate, Vmax, and the dissociation constant for F-actin of the ATPase, Kd, were 3.0 s-1 and 2.2 mg/ml, respectively. The Kd value was almost the same as that determined from the extent of binding of S-1 with F-actin during the ATPase reaction. The rate of recombination of the S-1-phosphate-ADP complex, S-1ADPP, with F-actin, vr, was lower than that of the ATPase reaction in the steady state. Thus, ATP is mainly hydrolyzed without accompanying dissociation of acto-S-1 into S-1ADPP and F-actin. In the cardiac acto-S-1 ATPase reaction, the rate of the ATPase reaction in the steady state and that of recombination of S-1ADPP with F-actin were about 1/5 those of the skeletal acto-S-1 ATPase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
To determine whether or not the two heads of myosin from striated adductor muscles of scallop are nonidentical and the main intermediate of the ATPase reaction, MADPP, is produced only on one of the two heads, the Pi-burst size, the amount of total bound nucleotides and the amount of bound ADP during the ATPase reaction were measured in this study. The Pi-burst size was 1 mol per mol in the presence of 0.1-5 mM Mg2+ ions. The amount of total nucleotides bound to myosin was 2 mol per mol. Both the amounts of bound ADP and ATP at sufficiently high ATP concentrations were 1 mol per mol of striated adductor myosin, and the affinity for ADP binding was higher than that for ATP binding. These findings indicate that MADPP or MATP is produced on each of the two heads of striated adductor myosin on its interaction with ATP. The fluorescence intensity at 340 nm of striated adductor myosin was enhanced by about 7% upon addition of ATP. The time for the half maximum fluorescence enhancement, tau 1/2, at 5 microM ATP was 0.25 s, which was almost equal to the tau 1/2 values for the Pi-burst and for the dissociation of actomyosin reconstituted from striated adductor myosin and skeletal muscle F-actin. The dependences on ATP concentration of the extent of the fluorescence enhancement and the dissociation of actomyosin could be explained by assuming that these changes are associated with the formation of MADPP on one of the two heads of myosin. The Pi-burst size and the amount of bound ADP of smooth adductor myosin were slightly but significantly larger than 1 mol per mol. Both ATPase reactions of striated and smooth adductor myofibrils showed the substrate inhibition. The extent of substrate inhibition of ATPase of smooth adductor myofibrils was less than that of striated adductor myofibrils. All the present findings support the view that the nonidentical two-headed structure is required for substrate inhibition of the actomyosin ATPase reaction.  相似文献   

4.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

5.
S P Chock  P B Chock  E Eisenberg 《Biochemistry》1976,15(15):3244-3253
A single cycle of adenosine 5'-triphosphate (ATP) hydrolysis by a complex of actin and myosin subfragment one (acto-S-1) was studied in a stopped-flow apparatus at low temperature and low ionic strength, using light scattering to monitor the interaction of S-1 with actin and fluorescence to detect the formation of fluorescent intermediates. Our results show that the addition of a stoichiometric concentration of ATP to the acto-S-1 causes a cycle consisting of first, a rapid dissociation of the S-1 from actin by ATP; second, a slower fluorescence change in the S-1 that may be related to the initial phosphate burst; and third, a much slower rate limiting recombination of the S-1 with actin. This latter step equals the acto-S-1 steady-state adenosine 5'-triphosphatase (ATPase) rate at both low and high actin concentrations, and like the steady-state ATPase levels off at a V max of 0.9s-1 at high actin concentration. Therefore, the release of adenosine 5'-diphosphate and inorganic phosphate is not the rate-limiting step in the acto-S-1 ATPase. Rather, a slow first-order step corresponding to the previously postulated transition from the refractory to the nonrefractory state precedes the rebinding of the S-1 to the actin during each cycle of ATP hydrolysis.  相似文献   

6.
Fluorescence stopped-flow experiments were performed to elucidate the elementary steps of the ATPase mechanism of scallop heavy meromyosin in the presence and in the absence of Ca2+. ATP binding and hydrolysis, as monitored by the change in tryptophan fluorescence, appear to be Ca2+-insensitive, whereas both Pi release and ADP release are markedly suppressed in the absence of Ca2+. Rate constants for Pi release are 0.2 s-1 and 0.002 s-1 and for ADP release are 6 s-1 and 0.01 s-1 in the presence and in the absence of Ca2+ respectively. Ca2+ binding to the specific site of the regulatory domain is rapid and its release occurs at 25 s-1, consistent with the time scale of a twitch of the striated adductor muscle. Nucleotide binding is a multi-step process requiring a minimum of three states. In such a model Ca2+ controls the rate of conformational changes at the active site in both the forward and the reverse direction, leading to a large dependence of the rate of nucleotide release, but a lesser effect on the overall equilibrium position. The kinetic trapping of nucleotides and Pi at the active site, in the absence of Ca2+, appears to be a fundamental step in suppressing the interaction of the myosin head with the thin filaments in relaxed molluscan muscle.  相似文献   

7.
Binding of magnesium to myosin subfragment-1 ATPase   总被引:1,自引:0,他引:1  
Tyr 180 of chicken breast muscle alkali light chain A1 was nitrated with tetranitromethane. The nitroA1 was incorporated into chicken breast muscle subfragment-1 (S-1) by exchange with the intrinsic alkali light chain. In the presence of adenylylimidodiphosphate (AMPPNP) or ADP, the S-1 containing nitroA1 showed a difference visible absorption spectrum by Mg2+ or Ca2+. The difference spectrum has a trough around 435 nm, indicating a blue shift of the absorption spectrum due to the nitrophenol chromophore of the modified A1. The plot of delta A at 435 nm versus concentration of free Mg2+ fitted a single binding curve, independent of the total concentration of AMPPNP. These results reveal that free Mg2+ binds to the active site of S-1 ATPase, but not as Mg-AMPPNP complex. The dissociation constants of magnesium from S-1 complex were different with the two nucleotides and were 1.25 X 10(-8) M and 1.24 X 10(-7) with AMPPNP and ADP, respectively. The difference spectrum was also obtained in the presence of ATP. The delta epsilon value after adding ATP changed with the ATPase reaction. The steady state rate of S-1 ATPase was measured at various concentrations of free Mg2+. The dissociation constant of magnesium from the steady state complex, EPADP(a), was estimated as 6 X 10(-8) M. These results suggest that the affinity of magnesium at the active site of ATPase changes with the intermediate states of ATPase reaction. The affinity of calcium was lower than that of magnesium.  相似文献   

8.
The large change in fluorescence emission of 1-N6-etheno-2-aza-ATP (epsilon-aza-ATP) has been used to investigate the kinetic mechanism of etheno-aza nucleotide binding to bovine cardiac myosin subfragment 1 (myosin-S1) and actomyosin subfragment 1 (actomyosin-S1). The time course of nucleotide fluorescence enhancement observed during epsilon-aza-ATP hydrolysis is qualitatively similar to the time course of tryptophan fluorescence enhancement observed during ATP hydrolysis. In single turnover experiments, the nucleotide fluorescence rapidly increases to a maximum level, then decreases with a rate constant of 0.045 s-1 to a final level, which is about 30% of the maximal enhancement; a similar fluorescence enhancement is obtained by adding epsilon-aza-ADP to cardiac myosin-S1 or actomyosin-S1 under the same conditions (100 mM KCl, 10 mM 4-morpholinepropanesulfonic acid, 5 mM MgCl2, 0.1 mM dithiothreitol, pH 7.0, 15 degrees C). The kinetic data are consistent with a mechanism in which there are two sequential (acto)myosin-S1 nucleotide complexes with enhanced nucleotide fluorescence following epsilon-aza-ATP binding. The apparent second order rate constants of epsilon-aza-ATP binding to cardiac myosin subfragment 1 and actomyosin subfragment 1 are 2-12 times slower than those for ATP. Actin increases the rate of epsilon-aza-ADP dissociation from bovine cardiac myosin-S1 from 1.9 to 110 s-1 at 15 degrees C which can be compared to 0.3 and 65 s-1 for ADP dissociation under similar conditions. Although there are quantitative differences between the rate and equilibrium constants of epsilon-aza- and adenosine nucleotides to cardiac actomyosin-S1 and myosin-S1, the basic features of the nucleotide binding steps of the mechanism are unchanged.  相似文献   

9.
The oxygen exchange occurring during the acto-S-1 ATPase reaction was analyzed based on the distribution of 18O-labeled species of P1 using [gamma-18O]ATP as a substrate. Evidence was found for the two-route mechanism in which ATP is hydrolyzed via the dissociation of acto-S-1 into F-actin and the S-1-phosphate-ADP complex, S-1PADP, and their recombination, and also hydrolyzed without the dissociation of acto-S-1 (Inoue, A., Shigekawa, M., & Tonomura, Y. (1973) J. Biochem. 74, 923-934; Inoue, A., Ikebe, M., & Tonomura, Y. (1980) J. Biochem. 88, 1663-1677). When ATP was mainly hydrolyzed without the dissociation of acto-S-1, the extent of oxygen exchange was low. When ATP was hydrolyzed by both routes, the distribution of product P1 with 3, 2, 1, and 0 18O atoms showed a mixture resulting from low and high oxygen exchange. The rate of ATPase without the dissociation of acto-S-1 can be estimated from the rate of the overall reaction (v), the rate of recombination of S-1PADP with F-actin (vr), and the extent of dissociation of acto-S-1 (a). The distribution of the P1 species measured was almost equal to that calculated from the ratio of ATP hydrolysis via the two pathways as avr and v-avr, respectively. This result indicates that the rates of the dissociation of acto-S-1PADP into S-1PADP and F-actin and their recombination are much lower than the rate of decomposition of the acto-S-1PADP complex into acto-S-1 + ADP + Pi.  相似文献   

10.
Mechanism for nucleotide exchange in monomeric actin   总被引:1,自引:0,他引:1  
C Frieden  K Patane 《Biochemistry》1988,27(10):3812-3820
Rabbit skeletal muscle G-actin has been treated to obtain ADP, 1,N6-ethenoadenosine diphosphate (epsilon-ADP), or 1,N6-ethenoadenosine triphosphate (epsilon-ATP) at the nucleotide binding site and either Mg2+ or Ca2+ at high- and moderate-affinity metal binding sites. Apparent rates or rate constants for the displacement of the actin-bound nucleotides by epsilon-ATP or ATP have been obtained by stopped-flow measurements at pH 8 and 20 degrees C of the fluorescence difference between bound and free epsilon-ATP or epsilon-ADP. In the presence of Ca2+, displacement of ADP by epsilon-ATP or epsilon-ADP by ATP is a biphasic process, but in the presence of low (less than 10 microM) Mg2+ concentrations, it is a slow first-order process. At high levels of Mg2+ (greater than 50 microM), low ADP concentrations displace epsilon-ATP from G-actin as a consequence of Mg2+ binding to moderate-affinity sites on the actin. Displacement of epsilon-ATP by ATP in the presence of either Ca2+ or Mg2+ is slow at low ATP concentrations, but the rate is increased by high ATP concentrations. Using ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, we find that nucleotide exchange is affected differently by the removal of Ca2+ from the high-affinity site compared to Ca2+ removal from moderate-affinity sites. A mechanism for the displacement reaction is proposed in which there are two forms of an actin-ADP complex and metal binding influences the ratio of these forms as well as the binding of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000. In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10(-7) or 2 . 10(-7), respectively. The fluorescence emission (lambdamax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with k1 = 2.4 . 10(4) M-1 . s-1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with K-1 = 3 . 10(-3) S-1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed. The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another. The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 10(6) M-1 . s-1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

12.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Antibody was prepared against the 25,000-dalton tryptic fragment of subfragment-1 from skeletal muscle myosin. The antibody was found to inhibit the Mg2+-ATPase activity and the initial P1-burst of the ATPase. The antibody suppressed the ATP-induced fluorescence enhancement of S-1, though it did not suppress the binding of ATP to S-1. The acto-S-1 ATPase activity was also inhibited by the antibody. These results suggest that there is a site in the 25K fragment region responsible for the transition of the myosin-ATP complex to another high energy complex.  相似文献   

14.
The synthetic heptapeptide, Ile-Arg-Ile-Cys-Arg-Lsy-Gly-ethoxy, an analog of one of the actin binding sites on myosin head (S-site) (Suzuki, R., Nishi, N., Tokura, S., and Morita, F. (1987) J. Biol. Chem. 262, 11410-11412) was found to completely inhibit the acto-S-1 (myosin subfragment 1) ATPase activity. The effect of the heptapeptide on the binding ability of S-1 for F-actin was determined by an ultracentrifugal separation. Results indicated that the heptapeptide scarcely dissociated the acto-S-1 complex during the ATPase reaction. Consistent results were obtained from the acto-S-1 ATPase activities determined as a function of S-1 concentrations in the absence or presence of the heptapeptide at a fixed F-actin concentration. The heptapeptide reduced the maximum acto-S-1 ATPase activity without affecting the apparent dissociation constant of the acto-S-1 complex. The heptapeptide bound by a site on actin complementary to the S-site probably inhibits the activation of S-1 ATPase by F-actin. These results suggest that S-1 ATPase is necessary to rebind transiently with F-actin at the S-site in order to be activated by F-actin. This is consistent with the activation mechanism proposed assuming the two actin-binding sites on S-1 ATPase (Katoh, T., and Morita F. (1984) J. Biochem. (Tokyo) 96, 1223-1230).  相似文献   

15.
Although there is agreement that actomyosin can hydrolyze ATP without dissociation of the actin from myosin, there is still controversy about the nature of the rate-limiting step in the ATPase cycle. Two models, which differ in their rate-limiting step, can account for the kinetic data. In the four-state model, which has four states containing bound ATP or ADP . Pi, the rate-limiting step is ATP hydrolysis (A . M . ATP in equilibrium A . M . ADP . Pi). In the six-state model, which we previously proposed, the rate-limiting step is a conformational change which occurs before Pi release but after ATP hydrolysis. A difference between these models is that only the four-state model predicts that almost no acto-subfragment 1 (S-1) . ADP . Pi complex will be formed when ATP is mixed with acto . S-1. In the present study, we determined the amount of acto . S-1 . ADP . Pi formed when ATP is mixed with S-1 cross-linked to actin [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Nature (London) 292, 301-306]. The amount of acto . S-1 . ADP . Pi was determined both from intrinsic fluorescence enhancement and from direct measurement of Pi. We found that at mu = 0.013 M, the fluorescence magnitude in the presence of ATP of the cross-linked actin . S-1 preparation was about 50% of the value obtained with S-1, while at mu = 0.053 M the fluorescence magnitude was about 70% of that obtained with S-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Regulation in striated muscles primarily involves the effect of changes in the free calcium concentration on the interaction of subfragment-1 (S-1) with the actin-tropomyosin-troponin complex (henceforth referred to as [acto]R). At low concentrations of free Ca++ the rate of ATP hydrolysis by (acto)R S-1 can be as much as 20-fold lower than that in the presence of high free Ca++, even though the binding of S-1 to (actin)R in the presence of ATP is virtually independent of the calcium concentration. This implies that the mechanism of regulation involves a kinetic transition between actin-bound states, rather than the result of changes in actin binding. In the current work, we have investigated the fluorescence transient that occurs with the binding and hydrolysis of ATP both at low and high free [Ca++]. The magnitude of this transition at low free [Ca++] is higher than at high free [Ca++]. At low free [Ca++], the rate of the fluorescence transient either stays constant or decreases slightly with increasing free actin concentrations, but at high free [Ca++] the rate increases slightly with increasing free actin concentration. The observed changes in rate are not great enough to be of regulatory importance. The results of the fluorescence transient experiments together with the binding studies performed at steady state also show that neither the binding of M.ATP or M.ADP.Pi to (actin)R is appreciably Ca++ sensitive. These data imply that an additional step (or steps) in the ATPase cycle, i.e., other than the burst transition, must be regulated by calcium.  相似文献   

18.
The main purpose of this study was to determine whether potentiation of acto-S-1 ATPase activity (activity higher than that obtained with tropomyosin-free actin) could be caused by nucleotide-containing acto-S-1 complexes. In addition, we wanted to know whether these complexes also have a positive cooperative effect on their own apparent binding constant under conditions where nucleotide-free acto-S-1 complexes cause potentiation of ATPase activity. Using calcium-saturated troponin-tropomyosin actin filaments, we observed potentiation of ATPase activity in the presence of 5.0 mM magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP) and calculated that the ability of acto-S-1-AMPPNP complexes to cause potentiation must have been very similar to that of nucleotide-free acto-S-1 complexes. In extension of earlier studies, potentiated acto-S-1 ATPase activity was characterized by an increase in Vmax and, as observed before, a lowering of the apparent Km for subfragment 1 (S-1). Under conditions similar to those that produce the potentiation of acto-S-1 ATPase activity, the apparent actin binding constant of nucleotide-free S-1 was increased about 3-5 fold while the apparent binding constant of AMPPNP to actin-bound S-1 was reduced to (2.5-10) x 10(2) M-1 compared to that of about (1-5) x 10(3) M-1 for S-1 bound to tropomyosin-free actin. Under the same conditions, the apparent binding constant of S-1-AMPPNP to actin was not increased. We suggest that a potentiated state of the tropomyosin actin filament is produced by the cooperative action of acto-S-1 or acto-S-1-AMPPNP complexes. The potentiated state is characterized by an increase in the Vmax of the acto-S-1 ATPase activity, increased binding constants for S-1 and S-1-ADP, and increased binding of tropomyosin to actin.  相似文献   

19.
1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2'-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site. 4. The nucleotide specificities of 'coupled processes' nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.  相似文献   

20.
Chymotryptic subfragment 1 (S-1) prepared from rabbit skeletal myosin has lost its ATPase activity upon incubation at 35 degrees C for 3 h. The loss in ATPase activity was accompanied by the perturbation of the structure of the 50K domain as indicated by a dramatic increase in the tryptic susceptibility of this domain without any change in the susceptibility of the other domains of S-1. The perturbation starts at the C-terminal region of the domain as suggested by the appearance of a 29K intermediate protein band in the tryptic peptide pattern of the heat-treated S-1. The heat-treated molecule essentially retained its actin and polyphosphate binding ability, and the actin binding was still sensitive to the presence of ATP or pyrophosphate. However, as opposed to native S-1, in heat-treated S-1 the addition of ATP does not induce an increase in tryptophan fluorescence, and, in the case of the treated species, the fluorescence of 1,N6-ethenoadenosine 5'-diphosphate added to the mixture is quenchable by acrylamide. This latter observation suggests that the binding of the adenine ring of the nucleotide has been altered following the heat treatment. The results indicate that the actin and polyphosphate binding sites of S-1 are distinct and that they are relatively independent of the adenine ring binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号