首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells.  相似文献   

3.
4.
5.
Two stearoyl-CoA desaturase (SCD) isoforms can be expressed during the differentiation of 3T3-L1 preadipocytes into adipocytes. Here we report on the effects of the peroxisome proliferator-activated receptor gamma ligand troglitazone (TRO) on scd1 and scd2 mRNA levels as determined by Northern blotting, on SCD protein expression as determined by Western blotting, and on total lipid composition as determined by GC during differentiation. In preadipocytes, scd1 mRNA and SCD protein were not detected, whereas scd2 mRNA was detected. These cells have high levels of palmitate (16:0), stearate (18:0), and monounsaturated oleate (Delta(9)-18:1) and low levels of monounsaturated palmitoleate (Delta(9)-16:1). In MDI (methylisobutylxanthine, dexamethasone, and insulin)-treated cells, scd1 mRNA and SCD protein were increased approximately 100-fold relative to preadipocyte levels, the scd2 mRNA level was increased 2-fold, Delta(9)-16:1 was increased approximately 20-fold, and 18:0 was decreased approximately 3-fold. In TRO-treated cells, the scd1 mRNA level was lower than that observed in preadipocytes, while the scd2 mRNA level was similar. TRO also decreased scd1 mRNA in primary adipocytes. The TRO-treated cells contained a Delta(9)-18:1 level typical of MDI-treated cells whereas, conversely, these cells also contained a low Delta(9)-16:1 level typical of preadipocytes. The implications of these correlations for the regulatory and enzymatic mechanism(s) used to establish and maintain lipid composition are discussed.  相似文献   

6.
The mouse preputial gland (PG), a specialized sebaceous structure, is rich in wax esters, triglycerides, and alkyl-2,3-diacylglycerol. We have found that the mouse PG expresses the three gene isoforms (SCD1, SCD2, and SCD3) of the Delta9 stearoyl-CoA desaturase enzyme that catalyzes the biosynthesis of monounsaturated fatty acids mainly, C16:1n-7 and C18:1n-9. However, mice with a targeted disruption in the SCD1 isoform (SCD1(-/-)) have undetectable SCD3 mRNA expression in the PG while the expression of SCD2 isoform was not altered. The levels of C16:1n-7 were reduced by greater than 70% while that of C18:1n-9 were reduced by 28%. The content of the C16:1n-10 (Delta6 hexadecenoic acid) isomer and a major fatty acid of the PG was increased by greater than 2-fold, mainly in the wax ester fraction of the SCD1(-/-) mouse. We demonstrate that the increase in C16:1n-10 is due to induction of a specific palmitoyl-CoA Delta6 desaturase activity. Testosterone administration to the SCD1(-/-) mouse induced SCD3 mRNA expression and resulted in an increase in the Delta9 desaturation of 16:0-CoA, but not of 18:0-CoA. These observations demonstrate that loss of SCD1 function alters the expression of SCD3 and reveal for the first time the presence and regulation of a palmitoyl-CoA Delta6 desaturase enzyme in mammals.  相似文献   

7.
8.
The trans-10,cis-12 isomer of conjugated linoleic acid (CLA) reduces body fat gain in animals and inhibits stearoyl-CoA desaturase (SCD) activity in 3T3-L1 adipocytes. To test whether CLA's body fat reduction is mediated by SCD1, wild-type and SCD1-null mice were fed diet supplemented with 0.2% trans-10,cis-12 (t10c12) CLA for 4 weeks. The t10c12 CLA-supplemented diet significantly reduced body fat mass in both wild type and SCD1-null mice. Similarly, t10c12 CLA diet decreased blood triglyceride and free fatty acid levels regardless of SCD1 genotypes. Mice fed t10c12 CLA exhibited increased mRNA expression of fatty acid synthase and uncoupling protein 2 in both genotypes. Taken together, the effects of t10c12 CLA on reduction of body fat gain, blood parameters, and mRNA expression in both SCD1-null mice and wild-type mice were similar, indicating that the anti-obesity effect of t10c12 CLA may be independent of the effects of this CLA isomer on SCD1 gene expression and enzyme activity.  相似文献   

9.
10.
The current study demonstrates that aquaporin adipose (AQPap), an adipose-specific glycerol channel (Kishida, K., Kuriyama, H., Funahashi, T., Shimomura, I., Kihara, S., Ouchi, N., Nishida, M., Nishizawa, H., Matsuda, M., Takahashi, M., Hotta, K., Nakamura, T., Yamashita, S., Tochino, Y., and Matsuzawa, Y. (2000) J. Biol. Chem. 275, 20896-20902), is a target gene of peroxisome proliferator-activated receptor (PPAR) gamma. The AQPap mRNA amounts increased following the induction of PPARgamma in the differentiation of 3T3-L1 adipocytes. The AQPap mRNA in the adipose tissue increased when mice were treated with pioglitazone (PGZ), a synthetic PPARgamma ligand, and decreased in PPARgamma(+/-) heterozygous knockout mice. In 3T3-L1 adipocytes, PGZ augmented the AQPap mRNA expression and its promoter activity. Serial deletion of the promoter revealed the putative peroxisome proliferator-activated receptor response element (PPRE) at -93/-77. In 3T3-L1 preadipocytes, the expression of PPARgamma by transfection and PGZ activated the luciferase activity of the promoter containing the PPRE, whereas the PPRE-deleted mutant was not affected. The gel mobility shift assay showed the direct binding of PPARgamma-retinoid X receptor alpha complex to the PPRE. DeltaPPARgamma, which we generated as the dominant negative PPARgamma lacking the activation function-2 domain, suppressed the promoter activity in 3T3-L1 cells, dose-dependently. We conclude that AQPap is a novel adipose-specific target gene of PPARgamma through the binding of PPARgamma-retinoid X receptor complex to the PPRE region in its promoter.  相似文献   

11.
12.
In mammalian cells, essential polyunsaturated fatty acids (PUFAs) are converted to longer PUFAs by alternating steps of elongation and desaturation. In contrast to other PUFA-rich tissues, the testis is continuously drained of these fatty acids as spermatozoa are transported to the epididymis. Alteration of the germ cell lipid profile from spermatogonia to condensing spermatids and mature spermatozoa has been described, but the male gonadal gene expression of the desaturases, responsible for the PUFA-metabolism, is still not established. The focus of this study was to characterize the expression and regulation of stearoyl-CoA desaturase 1 (SCD1), stearoyl-CoA desaturase 2 (SCD2), and Delta5- and Delta6-desaturase in rat testis. Desaturase gene expression was detected in testis, epididymis, and separated cells from seminiferous tubulus using Northern blot analysis. For the first time, SCD1 and SCD2 expression is demonstrated in rat testis and epididymis, both SCDs are expressed in epididymis, while testis mainly contains SCD2. Examination of the testicular distribution of Delta5- and Delta6-desaturase and SCD1 and SCD2 shows that all four desaturases seem to be localized in the Sertoli cells, with far lower expression in germ cells. In light of earlier published results showing that germ cells are richer in PUFAs than Sertoli cells, this strengthens the hypothesis of a lipid transport from the Sertoli cells to the germ cells. As opposed to what is shown in liver, Delta5- and Delta6-desaturase mRNA levels in Sertoli cells are up-regulated by dexamethasone. Furthermore, dexamethasone induces SCD2 mRNA. Insulin also up-regulates these three genes in the Sertoli cell, while SCD1 mRNA is down-regulated by both insulin and dexamethasone. Delta5- and Delta6-desaturase, SCD1, and SCD2 are all up-regulated by FSH. A similar up-regulation of the desaturases is observed when treating Sertoli cells with (Bu)2cAMP, indicating that the desaturase up-regulation observed with FSH treatment results from elevated levels of cAMP. Finally, testosterone has no influence on the desaturase gene expression. Thus, FSH seems to be a key regulator of the desaturase expression in the Sertoli cell.  相似文献   

13.
14.
15.
16.
17.
18.
19.
The effects of sterculic acid on cell size, adiposity, and fatty acid composition of differentiating 3T3-L1 adipocytes are correlated with stearoyl-CoA desaturase (SCD) expression (mRNA and protein levels) and enzyme activity. Fluorescence-activated cell scanning (FACS) analysis showed that adipocytes differentiated with methylisobutylxanthine, dexamethasone, and insulin (MDI) plus 100 microM sterculic acid comprised a population of predominantly large cells with reduced adiposity compared to MDI-treated cells. Although both groups had similar amounts of total fat, their fatty acid profiles were strikingly different: MDI-treated cells had high levels of the unsaturated palmitoleic (Delta(9)-16:1) and oleic (Delta(9)-18:1) acids, whereas the cells cultured with MDI plus sterculic acid accumulated palmitic (16:0) and stearic (18:0) acids together with a marked reduction in Delta(9)-16:1. Although the cells treated with MDI plus sterculic acid had similar levels of scd1 and scd2 mRNAs and antibody-detectable SCD protein as the MDI-treated cells, the SCD enzyme activity was inhibited more than 90%. The accumulation of 16:0 and 18:0, together with normal levels of fatty acid synthase (FAS) and aP2 mRNAs, shows that de novo synthesis and elongation of fatty acids, as well as cell differentiation, were not affected by sterculic acid. Because of the increase in cell size in the sterculic acid-treated cells, the insulin-stimulated 2-deoxyglucose (2-DOG) uptake was determined. Compared to MDI-treated cells, the 2-DOG uptake in the cells treated with sterculic acid was not affected. These results indicate that sterculic acid directly inhibits SCD activity, possibly by a turnover-dependent reaction, without affecting the processes required for adipocyte differentiation, scd gene expression or SCD protein translation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号