首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 μg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 μg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 μg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

2.
Resistance to transgenic cotton, Gossypium hirsutum L., producing Bacillus thuringiensis (Bt) toxin Cry1Ac is linked with three recessive alleles of a cadherin gene in laboratory-selected strains of pink bollworm, Pectinophora gossypiella (Saunders), a major cotton pest. Here, we analyzed a strain (MOV97-R) with a high frequency of cadherin resistance alleles, a high frequency of resistance to 10 microg of Cry1Ac per milliliter of diet, and an intermediate frequency of resistance to 1000 microg of Cry1Ac per ml of diet. We selected two strains for increased resistance by exposing larvae from MOV97-R to diet with 1000 microg of Cry1Ac per ml of diet. In both selected strains, two to three rounds of selection increased survival at 1000 microg of CrylAc per ml of diet to at least 76%, indicating genetic variation in survival at this high concentration and yielding >4300-fold resistance relative to a susceptible strain. Variation in cadherin genotype did not explain variation in survival at 1000 microg of Cry1Ac per ml of diet, implying that one or more other loci affected survival at this concentration. This conclusion was confirmed with results showing that when exposure to Cry1Ac stopped, survival at 1000 microg of Cry1Ac per ml of diet dropped substantially, but survival at 10 microg Cry1Ac per ml of diet remained close to 100% and all survivors had two cadherin resistance alleles. Although survival at 1000 microg of Cry1Ac per ml of diet is not required for resistance to Bt cotton, understanding how genes other than cadherin confer increased survival at this high concentration may reveal novel mechanisms of resistance.  相似文献   

3.
To evaluate resistance to Bacillus thuringiensis Berliner (Bt) toxins, adult female bollworms, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), were collected from four light trap locations in two eastern North Carolina counties from August to October during 2001 and 2002. Females were allowed to oviposit, and upon hatching, 24 neonates from each female (F1 lines) were screened for survival and growth rate on each of three diets: non-Bt diet, diet containing 5.0 microg/ml Cry1Ac toxin, or diet containing 5.0 microg/ml Cry2Ab toxin. These screens were designed to identify nonrecessive Bt resistance alleles present in field populations of bollworm. Of 561 and 691 families screened with both Cry1Ac- and Cry2Ab-containing diets in 2001 and 2002, respectively, no F1 lines were identified that seemed to carry a gene conferring substantial resistance to either Cry1Ac or Cry2Ab. Adults from F1 lines with growth scores in the highest (R) and lowest (S) quartiles were mated in four combinations, RxR, SxR, RxS, and SxS. Differences in growth rates of larvae from these crosses demonstrated that there is substantial quantitative genetic variation in eastern North Carolina populations for resistance to both Cry1Ac and Cry2Ab toxins. These findings, in addition to results suggesting partially dominant inheritance of resistance to Cry1Ac and Cry2Ab, are critically important for determining appropriate resistance management strategies that impact the sustainability of transgenic cotton, Gossypium hirsutum (L.).  相似文献   

4.
Thirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana. At a concentration of 100 microg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 microg/ml (for Cry9Ca and Cry1Ia, respectively) for an E. insulana laboratory colony originating from Egypt and from 0.20 to 4.25 microg/ml (for Cry9Ca and Cry1Da, respectively) for a laboratory colony originating from Spain. The relative potencies of the toxins in the population from Egypt were highest for Cry9Ca and Cry1Ab, and they were both significantly more toxic than Cry1Ac and Cry1Ba, followed by Cry1Da and finally Cry1Ia. In the population from Spain, Cry9Ca was the most toxic, followed in decreasing order by Cry1Ac and Cry1Ba, and the least toxic was Cry1Da. Binding experiments were performed to test whether the toxic Cry proteins shared binding sites in this insect. 125I-labeled Cry1Ac and Cry1Ab and biotinylated Cry1Ba, Cry1Ia, and Cry9Ca showed specific binding to the brush border membrane vesicles from E. insulana. Competition binding experiments among these toxins showed that only Cry1Ab and Cry1Ac competed for the same binding sites, indicating a high possibility that this insect may develop cross-resistance to Cry1Ab upon exposure to Cry1Ac transgenic cotton but not to the other toxins tested.  相似文献   

5.
Evolution of resistance by pests can reduce the benefits of transgenic crops that produce toxins from Bacillus thuringiensis (Bt) for insect control. One of the world's most important cotton pests, pink bollworm (Pectinophora gossypiella), has been targeted for control by transgenic cotton producing Bt toxin Cry1Ac in several countries for more than a decade. In China, the frequency of resistance to Cry1Ac has increased, but control failures have not been reported. In western India, pink bollworm resistance to Cry1Ac has caused widespread control failures of Bt cotton. By contrast, in the state of Arizona in the southwestern United States, monitoring data from bioassays and DNA screening demonstrate sustained susceptibility to Cry1Ac for 16 y. From 1996-2005, the main factors that delayed resistance in Arizona appear to be abundant refuges of non-Bt cotton, recessive inheritance of resistance, fitness costs associated with resistance and incomplete resistance. From 2006-2011, refuge abundance was greatly reduced in Arizona, while mass releases of sterile pink bollworm moths were made to delay resistance as part of a multi-tactic eradication program. Sustained susceptibility of pink bollworm to Bt cotton in Arizona has provided a cornerstone for the pink bollworm eradication program and for integrated pest management in cotton. Reduced insecticide use against pink bollworm and other cotton pests has yielded economic benefits for growers, as well as broad environmental and health benefits. We encourage increased efforts to combine Bt crops with other tactics in integrated pest management programs.  相似文献   

6.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

7.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

8.
Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with (125)I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ja bound to a common binding site that was not shared by the other toxins tested. Reciprocal competition experiments with Cry1Ab, Cry1Ac, and Cry1Ja showed that these toxins do not bind to any additional binding sites. In the resistant strain, binding of (125)I-Cry1Ac was not significantly affected; however, (125)I-Cry1Ab did not bind to the BBMV. This result, along with previous data from this strain, shows that the resistance fits the "mode 1" pattern of resistance described previously in Plutella xylostella, Plodia interpunctella, and Heliothis virescens.  相似文献   

9.
Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac   总被引:4,自引:0,他引:4  
Laboratory selection increased resistance of pink bollworm (Pectinophora gossypiella) to the Bacillus thuringiensis toxin Cry1Ac. Three selections with Cry1Ac in artificial diet increased resistance from a low level to >100-fold relative to a susceptible strain. We used artificial diet bioassays to test F1 hybrid progeny from reciprocal crosses between resistant and susceptible strains. The similarity between F1 progeny from the two reciprocal crosses indicates autosomal inheritance of resistance. The dominance of resistance to Cry1Ac depended on the concentration. Resistance was codominant at a low concentration of Cry1Ac, partially recessive at an intermediate concentration, and completely recessive at a high concentration. Comparison of the artificial diet results with previously reported results from greenhouse bioassays shows that the high concentration of Cry1Ac in bolls of transgenic cotton is essential for achieving functionally recessive inheritance of resistance.  相似文献   

10.
Laboratory selection with Cry1Ac, the Bacillus thuringiensis (Bt) toxin in transgenic cotton, initially produced 300-fold resistance in a field-derived strain of pink bollworm, Pectinophora gossypiella (Saunders), a major cotton pest. After additional selection increased resistance to 3,100-fold, we tested the offspring of various crosses to determine the mode of inheritance of resistance to Cry1Ac. The progeny of reciprocal F1 crosses (resistant male x susceptible female and vice versa) responded alike in bioassays, indicating autosomal inheritance. Consistent with earlier findings, resistance was recessive at a high concentration of Cry1Ac. However, the dominance of resistance increased as the concentration of Cry1Ac decreased. Analysis of survival and growth of progeny from backcrosses (F1 x resistant strain) suggest that resistance was controlled primarily by one or a few major loci. The progression of resistance from 300- to 3,100-fold rules out the simplest model with one locus and two alleles. Overall the patterns observed can be explained by either a single resistance gene with three or more alleles or by more than one resistance gene. The pink bollworm resistance to Cry1Ac described here fits "mode 1" resistance, the most common type of resistance to Cry1A toxins in Lepidoptera.  相似文献   

11.
Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]). The Arizona pooled resistant strain (AZP-R) was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3) in the pink bollworm cadherin gene (PgCad1) linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1) progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4) predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.  相似文献   

12.
Two strains of pink bollworm (Pectinophora gossypiella) selected in the laboratory for resistance to Bacillus thuringiensis toxin Cry1Ac had substantial cross-resistance to Cry1Aa and Cry1Ab but not to Cry1Bb, Cry1Ca, Cry1Da, Cry1Ea, Cry1Ja, Cry2Aa, Cry9Ca, H04, or H205. The narrow spectrum of resistance and the cross-resistance to activated toxin Cry1Ab suggest that reduced binding of toxin to midgut target sites could be an important mechanism of resistance.  相似文献   

13.
Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China   总被引:4,自引:0,他引:4  
Wan P  Huang Y  Wu H  Huang M  Cong S  Tabashnik BE  Wu K 《PloS one》2012,7(1):e29975
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera), the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.  相似文献   

14.
Classical and molecular genetic analyses show that two independently derived resistant strains of pink bollworm, Pectinophora gossypiella (Saunders), share a genetic locus at which three mutant alleles confer resistance to Bacillus thuringiensis (Bt) toxin Cry1Ac. One laboratory-selected resistant strain (AZP-R) was derived from individuals collected in 1997 from 10 Arizona cotton fields, whereas the other (APHIS-98R) was derived from a long-term susceptible laboratory strain. Both strains were previously reported to show traits of "mode 1" resistance, the most common type of lepidopteran resistance to Cry1A toxins. Inheritance of resistance to a diagnostic concentration of Cry1Ac (10 microg per gram of diet) was recessive in both strains. In interstrain complementation tests for allelism, F1 progeny from crosses between the two strains were resistant to the diagnostic concentration of Cry1Ac. These results indicate that a major resistance locus is shared by the two strains. Analysis of DNA from the pink bollworm cadherin gene (BtR) using allele-specific polymerase chain reaction (PCR) tests showed that the previously identified resistance alleles (r1, r2, and r3) occurred in both strains, but their frequencies differed between strains. In conjunction with previous findings, the results reported here suggest that PCR-based detection of the three known cadherin resistance alleles might be useful for monitoring resistance to Cry1Ac-producing Bt cotton in field populations of pink bollworm.  相似文献   

15.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

16.
Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.  相似文献   

17.
在我国Bt棉主要以Cry1Ab或Cry1Ac为主,其他新型Bt基因未被转入棉花中用来控制害虫,然而大面积种植单价Bt基因的棉花,将可能会大大增加靶标害虫对该类型Bt棉花抗性频率,因此研究其他新型Bt蛋白对靶标害虫的控制作用显得十分必要。采用蛋白混入人工饲料的生物测定方法,在室内测定了6种Bt蛋白对棉铃虫初孵幼虫的毒力,比较了浓度为1.0μg· g-1时不同Bt蛋白对棉铃虫幼虫生长发育的影响。毒力测定结果表明,不同Bt蛋白对棉铃虫初孵幼虫的毒力不同,LC50值由低到高依次为Cry1Ab 0.065μg· g-1、Cry1Ac 0.074μg· g-1、Cry2Ab 0.133μg· g-1、Cry2Aa 11.670μg· g-1、Cry1Ah 13.010μg· g-1和Cry1Ca>20μg· g-1。生长发育测定结果表明,Cry1Ab和Cry1Ac对棉铃虫幼虫的生长发育影响最大,Cry2Ab次之;Cry1Ah和Cry2Aa对1龄幼虫的校正死亡率和体重抑制率差别不大,但对2龄幼虫的差异较大,Cry1Ah处理2龄幼虫后体重和生长发育参数与Cry2Ab接近,而Cry1Ca对棉铃虫幼虫生长发育几乎没影响。Cry1Ah、Cry2Aa和Cry2Ab的毒力不如Cry1Ac和Cry1Ab,但仍可以作为控制棉铃虫幼虫的替代策略。  相似文献   

18.
Baseline susceptibility of legume pod borer (LPB) to the insecticidal crystal proteins (ICPs) from Bacillus thuringiensis, viz, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca and Cry2Aa was assessed in Taiwan. Insect bioassays were performed by incorporating the Bt delta-endotoxins into the LPB artificial diet. The efficacy of different Bt delta-endotoxins against second instar larvae of LPB showed that the toxin Cry1Ab was the most potent toxin (LC(50) 0.207ppm), followed by Cry1Ca, Cry1Aa, Cry2Aa and Cry1Ac in descending order, with LC(50)s 0.477ppm, 0.812ppm, 1.058ppm and 1.666ppm, respectively. Hence, Cry1Ab and/or Cry1Ca toxins would provide effective control of early larval stages of LPB.  相似文献   

19.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号