首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The inhibitor of gamma-glutamyl transpeptidase (gamma-GT) acivicin modulates cellular responses including growth, myeloid maturation and apoptosis. Whether these effects result from the inhibition of gamma-GT enzyme activity remains unclear. We compared the cellular effects of acivicin against a more potent and specific inhibitor of gamma-GT (L-2-amino-4-boronobutanoic acid (L-ABBA)) in gamma-GT-negative (B lymphoblastoid Ramos) and gamma-GT-positive (myelomonocytic HL-60, gamma-GT-transfected Ramos) cell lines. Under non-oxidative stress conditions, acivicin-induced cell growth arrest, apoptosis and macrophage maturation occurred independent of gamma-GT while L-ABBA did not influence any of these processes. Acivicin triggered tyrosine phosphorylation and increased nuclear factor kappaB activity. Further insight into the role of gamma-GT in cellular processes is needed.  相似文献   

2.
The enzymatic transamination reactions between aspartic and α-ketoglutaric acid and between aspartic and pyruvic acid were studied in fresh dialysed extracts of young wheat plants cultivated under various trophical conditions, in mineral solution (Knop), in the solution of an soil organic substance (potassium humate) and without nutrients (H2O). Simultaneously, the level of endogenic aspartic acid, glutamic acid and the growth values were determined. The enzymatic reactions were characterized by determining the optimum pH, the time course, and the effect of coenzyme and of inhibitors. The activity of the aspartate-glutamate transaminase from the root system of plants was considerably higher than the activity of the overground organs. The enzymatic activity from both parts of the plant was inversely proportional to the growth rate: intensive growth of the plants from the Knop variant was connected with their low enzymatic activity; the level of endogenic glutamic acid was high. The slow growth of the plants without nutrients was connected with a higher enzymatic activity; the level of endogenic glutamic acid was low. The plants from the potassium humate variant had an intermediate position between these two variants from the point of view of growth as well as from that of enzymatic activity. The plants with insufficient nutrition (slow growth, low level of endogenic glutamic acid) apparently have a low capacity for supplementing the glutamic acid deficit, which is essential for the metabolic processes, by increasing the activity of the reactions leading to glutamic acid synthesis (Asp-Glu) and, on the other hand, by decreasing the reactions utilizing it (Glu-Ala). For wheat plants the active aspartate-glutamate reaction is obviously physiologically more important than the direct reaction glutamate-aspartate and the reaction aspartate-alanine which in all cases had a very low activity.  相似文献   

3.
4.
Leucine was oxidized by rat adipose tissue at a rate which was not limited by the activity of branched chain amino acid transaminase since high concentrations (10 mM) of [1-14C]leucine and its transamination product, alpha-keto[1-14C]isocaproate, were oxidized at similar rates. Despite the apparent abundance of transaminase activity, however, [1-14C]valine was oxidized at only 10 to 25% of the rate of its transamination product, alpha-keto[1-14C]isovalerate. The net rate at which [1-14C] valine was transaminated by intact tissues was estimated as the sum of the rates of 14CO2 production and alpha-ketoiso[1-14C]valerate release into the medium. Transamination did not limit the rate of valine oxidation since valine was transaminated 3 times as fast as it was oxidized. The rate of valine transamination increased 18-fold when its concentration was raised 100-fold, but the fraction of [1-14C]valine oxidized to 14CO2 remained constant over the range of incubation conditions studied. The oxidation/transamination ratio for leucine was also constant and exceeded the oxidation/transamination ratio for valine unless valine oxidation was stimulated, either by the addition of glucose or leucine. Stimulation of valine oxidation did not increase its transamination but reduced the rate at which alpha-ketoisovalerate was released from the tissue. The faster oxidation of alpha-ketoisocaproate than of alpha-ketoisovalerate may be due to the activation of branched chain alpha-keto acid dehydrogenase by alpha-ketoisocaproate, but the alpha-keto acid oxidation rates do not fully account for the faster transamination of leucine than of valine.  相似文献   

5.
A single intraperitoneal injection of nicotinamide (500 mg/kg) to mongrel albino rats causes a 6-hour increase in the 2-oxoglutarate level and the free NAD+/NADH ratio in liver mitochondria. The levels of taurine and taurocholates as well the activity of cysteine oxidase in liver tissues remains thereby unchanged, whereas the cysteine transaminase activity diminishes. In the heart and brain of experimental animals the activity of both enzymes is decreased. In the liver, blood plasma and heart of experimental animals, the Ala and Ser levels are low, whereas the taurine content is elevated both in blood plasma and brain. Nicotinamide administration eliminates positive correlations between the levels of taurine, its precursors and metabolically bound amino acids. In the liver the negative correlations between the activities of cysteine oxidase and cysteine transaminase observed in the control group disappear in the experimental group. Apparently, one of regulatory mechanisms of the taurine pool formation in the liver is the ratio of activities of the both enzymes as well as their competition at the substrate level. This emphasizes the importance of the transamination reactions in the metabolism of sulphur-containing amino acids.  相似文献   

6.
Peptostreptococcus elsdenii, a strict anaerobe from the rumen, was grown on a medium containing yeast extract and [1-(14)C]- or [2-(14)C]-lactate. Radioisotope from lactate was found in all cell fractions, but mainly in the protein. The label in the protein fraction was largely confined to a few amino acids: alanine, serine, aspartic acid, glutamic acid and diaminopimelic acid. The alanine, serine, aspartic acid and glutamic acid were separated, purified and degraded to establish the distribution of (14)C from lactate within the amino acid molecules. The labelling patterns in alanine and serine suggested their formation from lactate without cleavage of the carbon chain. The pattern in aspartic acid suggested formation by condensation of a C(3) unit derived directly from lactate with a C(1) unit, probably carbon dioxide. The distribution in glutamic acid was consistent with two possible pathways of formation: (a) by the reactions of the tricarboxylic acid cycle leading from oxaloacetate to 2-oxoglutarate, followed by transamination; (b) by a pathway involving the reaction sequence 2 acetyl-CoA-->crotonyl-CoA-->glutaconate-->glutamate.  相似文献   

7.
Winter HC  Dekker EE 《Plant physiology》1989,89(4):1122-1128
Aspartate aminotransferase (glutamate-oxalacetate transaminase) was partially purified from extracts of germinating seeds of peanut (Arachis hypogaea), honey locust (Gleditsia triacanthos), soybean (Glycine max), and Sophora japonica. The ability of these enzyme preparations, as well as aspartate aminotransferase purified from pig heart cytosol, to use 4-substituted glutamic acids as amino group donors and their corresponding 2-oxo acids as amino group acceptors in the aminotransferase reaction was measured. All 4-substituted glutamic acid analogs tested were poorer substrates than was glutamate or 2-oxoglutarate. 2-Oxo-4-methyleneglutarate was least effective (lowest relative Vm/Km) as a substrate for the enzyme from peanuts and honey locust, which are the two species studied that accumulate 4-methyleneglutamic acid and 4-methyleneglutamine. Of the different aminotransferases tested, the enzyme from honey locust was the least active with 2-oxo-4-hydroxy-4-methylglutarate, the corresponding amino acid of which also accumulates in that species. These results suggest that transamination of 2-oxo-4-substituted glutaric acids is not involved in the biosynthesis of the corresponding 4-substituted glutamic acids in these species. Rather, accumulation of certain 4-substituted glutamic acids in these instances may be, in part, the result of the inefficacy of their transamination by aspartate aminotransferase.  相似文献   

8.
Efflux of glutathione (GSH) and GSH-conjugates from cultured rat liver epithelial cell lines; the non-tumorigenic ARL-15C1 and the -glutamyl transpeptidase containing, tumorigenic ARL-16T2, has been assessed under basal condition and during chronic treatment with 75 and 150 M ethacrynic acid (EA). The intracellular level of GSH increased in proportion to EA concentration during chronic exposure. The rates of GSH and GSH-EA conjugate efflux increased with intracellular GSH in both ARL cell lines.Glutathione-S-transferase activity measured with EA as substrate increased over the experimental time course after treatment with 150, but not 75 M EA. When intracellular GSH content was increased by treatment with the cysteine pro-drug, 2-L-oxothiazolidine 4-carboxylic acid, the rate of GSH efflux was increased, but not the rate of GS-EA conjugate export. Inhibition of -glutamyl transpeptidase by acivicin (AT-125) increased the GSH and GS-EA conjugate efflux rate in ARL-16T2 cells by factors of approximately 2 and 15, respectively. Acivicin treatment of ARL-16T2 cells chronically treated with EA elevated GSH efflux rate by 10-fold and GS-EA efflux by 40-fold versus control samples. These studies show that GSH and GSH conjugate efflux are accomplished as independently regulated processes. Efflux of GSH is enhanced by increased in racellular GSH, but increase in the conjugate transport rate requires the presence of the GSH conjugate. The response of the efflux process to treatment with a chronic GSH depleting agent was identical in two cell lines in which the metabolic fate of glutathione is known to differ fundamentally.Abbreviations GSH reduced glutathione - GSSG oxidized glutathione - GS-EA the glutathione conjugate of ethacrynic acid - EA ethacrynic acid - CDNB 1-chloro 2,4-dinitrobenzene - HBS HEPES buffered saline - OTC 2-L-oxothiazolidine 4-carboxylic acid - CYSSG cysteinyl-glutathione mixed disulfide - FDNB 1-fluoro-2,4-dinitrobenzene - GCS -glutamyl cysteine synthetase - GST glutathione-S-transferase - BCA bicinchoninic acid - SDS sodium dodecyl sulfate - PCA perchloric acid  相似文献   

9.
Bacillus cereus strain K-22 produced two distinct omega-amino acid transaminases, one catalyzing the transamination between beta-alanine and pyruvic acid and the other that between gamma-aminobutyric acid and alpha-ketoglutaric aic. The two enzymes were partially purified and separated from each other by various chromatographies. beta-Alanine:pyruvic acid transaminase and gamma-aminobutyric acid:alpha-ketoglutaric acid transaminase were induced by the addition of beta-alanine and gamma-aminobutyric acid, respectively, to the growth medium. beta-Alanine transaminase showed an optimum pH of 10.0 and optimum temperature of 35 degrees C, and its Km values for beta-alanine and pyruvic acid were both 1.1 mM. gamma-Aminobutyric acid, epsilon-aminocaproic acid, 2-aminoethylphosphonic acid, and propylamine showed about 30-40% of the activity of beta-alanine as amino donors, and oxalacetic acid was as good an amino acceptor as pyruvic acid. The optimum pH and temperature of gamma-aminobutyric acid transaminase were 9.0 and 50 degrees C, respectively, and its Km value for gamma-aminobutyric acid was 2.8 mM, while that for alpha-ketoglutaric acid was 2.3 mM. gamma-Aminobutyric acid and delta-aminovaleric acid were good amino donors but other omega-amino acids were virtually inactive with gamma-aminobutyric acid transaminase; alpha-ketoglutaric acid, and to a lesser extent glyoxylic acid, were active amino acceptors. Sulfhydryl reagents specifically activated gamma-aminobutyric acid transaminase.  相似文献   

10.
Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies   总被引:4,自引:0,他引:4  
Pathways of ammonia assimilation into glutamic acid and alanine in Bacillus polymyxa were investigated by 15N NMR spectroscopy in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthetase, alanine dehydrogenase, and glutamic-alanine transaminase. Ammonia was found to be assimilated into glutamic acid predominantly by NADPH-dependent glutamate dehydrogenase with a Km of 2.9 mM for NH4+ not only in ammonia-grown cells but also in nitrate-grown and nitrogen-fixing cells in which the intracellular NH4+ concentrations were 11.2, 1.04, and 1.5 mM, respectively. In ammonia-grown cells, the specific activity of alanine dehydrogenase was higher than that of glutamic-alanine transaminase, but the glutamate dehydrogenase/glutamic-alanine transaminase pathway was found to be the major pathway of 15NH4+ assimilation into [15N]alanine. The in vitro specific activities of glutamate dehydrogenase and glutamine synthetase, which represent the rates of synthesis of glutamic acid and glutamine, respectively, in the presence of enzyme-saturating concentrations of substrates and coenzymes are compared with the in vivo rates of biosynthesis of [15N]glutamic acid and [alpha,gamma-15N]glutamine observed by NMR, and implications of the results for factors limiting the rates of their biosynthesis in ammonia- and nitrate-grown cells are discussed.  相似文献   

11.
Metabolism of glutamic acid in a mutant of Escherichia coli   总被引:5,自引:3,他引:2  
Vender, Joyce (Indiana University, Bloomington), Kunthala Jayaraman, and H. V. Rickenberg. Metabolism of glutamic acid in a mutant of Escherichia coli. J. Bacteriol. 90:1304-1307. 1965.-A mutant strain of Escherichia coli W1485 was selected for its ability to utilize glutamic acid as the sole source of carbon. Growth of the mutant on glutamic acid led to the repression of glutamic acid dehydrogenase formation. The mutant differed from the wild-type strain in that glutamic decarboxylase activity was absent from the mutant under conditions of growth which supported the formation of this enzyme in the parent strain. Evidence is presented which suggests that loss of the decarboxylase activity results in the acquisition of the ability to utilize glutamic acid as sole source of carbon; a pathway of glutamate utilization via transamination is proposed.  相似文献   

12.
Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and alpha-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of alpha-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.  相似文献   

13.
The enzyme gamma-glutamyl transferase (gamma-GT) is involved in many biochemical systems, including the signal transduction of hematopoietic growth factors. Standard colorimetric gamma-GT assays require larger cell numbers than may be obtainable in many cases, such as with highly purified stem-cell populations. To study gamma-GT expression in limited populations, we used a histochemical stain to analyze gamma-GT semiquantitatively in cells of hematopoietic origin. Several human leukemic cell lines, including one with inducible increases in gamma-GT, were stained for gamma-GT and graded 0 through 4+ for the amount of positive granules. The gamma-GT activity demonstrated by this stain was found to be directly proportional to the gamma-GT activity obtained with a colorimetric assay and could be used to calculate approximate gamma-GT activity. This stain therefore provides a useful method for determining gamma-GT activity when limited cell numbers are available.  相似文献   

14.
Extracellular glutathione (GSH) is degraded by an external cell-surface enzyme, γ-glutamyltranspeptidase (γ-GT). The products are transported into cells to participate in important cellular processes. In the present study, we tested the hypothesis that extracellular GSH is a source of glutamic acid for cells that express γ-GT. Under a glutamine-deficient culture condition, the extracellular GSH-supplemented glutamic acid would enhance intracellular glutamine synthesis, thereby stimulating cell proliferation. Human lung carcinoma A549 cells were cultured in glutamine-deficient Dulbecco's modified Eagle medium, and they did not proliferate unless glutamine was supplemented. Extracellular GSH, however, provoked a partial proliferation. The GSH effect correlated with a high level of γ-GT activity and an increased intracellular level of glutamic acid. A constituent amino acid of GSH, glutamic acid but not cysteine, produced the same growth-stimulatory effect as GSH. Furthermore, neither oxothiazolidine-4-carboxylate (OTC), a celluar cysteine-delivery compound, nor cysteinylglycine, a dipeptide released from the γ-GT reaction, stimulated cell proliferation. Moreover, buthionine sulfoximine (BSO), a selective inhibitor of γ-glutamylcysteine synthetase, enhanced the GSH growth stimulatory effect, suggesting that increased cellular GSH synthesis does not correlate with cell growth stimulation. The results obtained demonstrated that glutamine is required for A549 cell proliferation and exogenous GSH partially substitutes for the growth stimulatory action of glutamine. It also suggests that the glutamic acid rather than the cysteine released from the GSH is responsible for the cell proliferation. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Blatt, L. (University of Wisconsin, Madison), F. E. Dorer, and H. J. Sallach. Occurrence of hydroxypyruvate-l-glutamate transaminase in Escherichia coli and its separation from hydroxypyruvate-phosphate-l-glutamate transaminase. J. Bacteriol. 92:668-675. 1966.-The formation of l-serine from hydroxypyruvate by a transamination reaction with l-glutamate has been demonstrated in extracts of Escherichia coli. The level of activity with hydroxypyruvate is approximately one-tenth that observed with hydroxypyruvate-phosphate in cell-free extracts. The transamination of hydroxypyruvate, but not hydroxypyruvate-phosphate, is inhibited by inorganic phosphate. No marked differences in the levels of activity with hydroxypyruvate were observed in extracts from bacteria grown under different conditions. Heat treatment of enzyme preparations at 65 C rapidly destroys the activity with hydroxypyruvate-phosphate, but not that with hydroxypyruvate. Fractionation of extracts with lithium sulfate and alumina Cgamma resulted not only in a 10-fold purification, but also in a complete separation of the two activities, thereby establishing that two different enzymes are involved in the transamination of hydroxypyruvate and hydroxypyruvate-phosphate. Hydroxypyruvate transaminase is present in two mutants that require serine for growth. The inability of hydroxypyruvate to replace the growth requirement for serine, even to a limited extent, was shown to be due to the inability of the bacteria to accumulate this compound actively.  相似文献   

16.
17.
In dialyzed extracts from winter wheat plants transamination reactions occurred between asparagine and α-ketoglutaric acid (L-asparagine+2-oxoacid=2-oxosuccinamate+ +amino acid; 2. 6. 1. 14). Reactions with pyruvate exhibited a very low activity. Besides transamination products,i. e. glutamate and alanine, aspartic acid was formed in both reactions. Deamidation was more intensive in the weak reaction asparagine-alanine and less intensive in the asparagine-glutamate reaction. When calculated per dry weight unit the activity was the same in plants of all variants (three experimental variants—Knop, potassium humate, water). A higher, activity was found in root dialysates; however, a highly significant difference could be observed only between shoots and roots of Knop variant. When evaluating results in terms of protein content we found a significant difference between mineral variant (Knop—the lowest activity) and both deficient variants (potassium humate, water—the highest activity). Thus the highest growth activity was in connection with the lowest transamination activity and vice versa, which was the same as in transaminations of aspartic acid. In the case of asparagine, too, one can consider the possibility of its utilization via transamination for biosynthesis of glutamic acid in plants which have, for reasons of nutrition, a low level of this metabolically important amino acid.  相似文献   

18.
Non-enzymic transamination reactions at 85 degrees between various amino acids and alpha-oxoglutaric acid are catalysed by metal ions, e.g. Al(3+), Fe(2+), Cu(2+) and Fe(3+). The reaction is optimum at pH4.0. Of the 14 amino acids studied histidine is the most active. In the presence of Al(3+) histidine transaminates with alpha-oxoglutaric acid, forming glutamic acid and Al(3+)-imidazolylpyruvic acid complex as the end products. However, in the presence of Fe(2+) or Cu(2+) the products are glutamic acid and a 1:2 metal ion-imidazolylpyruvic acid chelate. The greater effectiveness of histidine in these reactions is attributed to the presence of the tertiary imidazole nitrogen atom, which is involved in the formation of stable sparingly soluble metal ion-imidazolylpyruvic acid complexes or chelates as end products of these reactions. Of the metal ions studied only Al(3+), Fe(2+), Fe(3+) and Cu(2+) are effective catalysts for the transamination reactions, and EDTA addition completely inhibits the catalytic effect of the Al(3+). Spectrophotometric evidence is presented to demonstrate the presence of metal ion complexes of Schiff bases of histidine as intermediates in the transamination reactions. These results may contribute to understanding the role of histidine in enzyme catalysis.  相似文献   

19.
Aspects of glutamine metabolism were examined in two related hybridomas, a high-producing line (PQX B1/2) and a low-producing line (PQX B2/2). The growth and metabolic characteristics of both cell lines were identical or very similar. During batch growth glutamine was completely exhausted from the medium and an examination of the fate of [14C]glutamine highlighted the importance of this amino acid as an energy source. The relative enzyme activities and the amount of ammonia produced during growth indicated that glutamine is oxidized preferentially via the transamination pathway. The overall rate of glutamine utilization from the growth medium was similar to the rate of [14C]glutamine uptake which suggests that transport may regulate glutamine metabolism.  相似文献   

20.
Amino acid availability is a key factor that can be controlled to optimize the productivity of fed-batch cultures. To study amino acid limitation effects, a serum-free chemically defined basal medium was formulated to exclude the amino acids that became depleted in batch culture. The effect of limiting glutamine, asparagine, and cysteine on the cell growth, metabolism, antibody productivity, and product glycosylation was investigated in three Chinese hamster ovary (CHO) cell lines (CHO-DXB11, CHO-K1SV, and CHO-S). Cysteine limitation was detrimental to both cell proliferation and productivity for all three CHO cell lines. Glutamine limitation reduced growth but not cell specific productivity, whereas asparagine limitation had no significant effect on either growth or cell specific productivity. Neither glutamine nor asparagine limitation significantly affected antibody glycosylation. Replenishing the CHO-DXB11 culture with cysteine after 1 day of cysteine limitation allowed the cells to partially recover their growth and productivity. This recovery was not observed after 2 days of cysteine limitation. Based on these findings, a fed-batch protocol was developed using single or mixed amino acid supplementation. Although cell density and antibody concentration were lower compared to a commercial feed, the feeds based on cysteine supplementation yielded comparable cell specific productivity. Overall, this study showed that different amino acid limitations have varied effects on the performance of CHO cell cultures and that maintaining cysteine availability is a critical process parameter for the three cell lines investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号