首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study the influence of pretreatment with various GSH depletors such as buthionine sulfoximine (BSO) and diethylmaleate (DEM) was investigated in rats following cerebral postischemic reperfusion. Moreover, the effect of diethyldithiocarbamic acid (DDC), inhibitor of endogenous Cu,Zn-SOD, was evaluated. A significant depletion (40% of control value) of GSH levels was observed 24 h after DEM administration; after 48 h the value reached control levels. BSO showed maximal GSH depletion (59%) 24 h after administration and it was constant for almost 48 h. DDC administration caused a marked decrease (60%) of Cu,Zn-SOD activity 4 h after the injection and induced a marked decrease in percentage of survival with respect to control (untreated, ischemic) rats, when administered 4 h before ischemia. BSO and DEM prolonged the survival time of animals when administered 24 h before ischemia. This last paradoxical effect is unclear at present, but it might be due to an influence on glutamate cascade.  相似文献   

2.
Two metabolites of a free radical scavenger, edaravone, were synthesized. Edaravone glucuronate was synthesized by glycosylation of a glucuronic acid precursor using silver (I) trifluoromethane-sulfonate with edaravone. Edaravone sulfate was synthesized by sulfonylation of edaravone using a sulfur trioxide-pyridine complex. The two synthesized metabolites were identical to isolated metabolites. X-ray analysis identified edaravone glucuronate as beta-O-glucuronate, although there were three possible edaravone glucuronate tautomers.  相似文献   

3.
We assess the availability of plasma biomarkers to monitor the brain damage and the therapeutic efficacy of edaravone. The study consisted of 51 patients with ischemic cerebral infarcts. They were divided into 2 groups: GI (n = 24) had cortical lesions, and GII (n = 27) had lesions in the basal ganglia or brain stem. Edaravone was administered to 27 randomly selected patients (GIa, n = 13; GIIa, n = 14) and its efficacy was studied by comparing their plasma OxLDL, S-100B, and MnSOD levels to those in patients without edaravone (GIb, n = 11, GIIb, n = 13). Three days after the start of edaravone, plasma OxLDL was significantly lower in GIa than GIb patients (0.177 +/- 0.024 ng/microg apoB vs 0.219 +/- 0.026, P < 0.05). In GIIa patients, pre- and posttreatment plasma OxLDL was not significantly different (0.156 +/- 0.013 vs 0.152 +/- 0.020). In GIa patients, S-100B and MnSOD were significantly lower than in GIb patients (P < 0.05). The neurological condition at the time of discharge had recovered in GIa but not GIb patients. Ours is the first evidence to confirm the efficacy of edaravone by plasma biomarkers. In patients with cortical infarcts, edaravone reduced oxidative damage, thereby limiting the degree of brain damage.  相似文献   

4.
It has been documented that alpha-phenyl-N-tert-butyl-nitron (PBN) possesses a potent neuroprotective effect when administered after transient focal cerebral ischemia. However, contradicting results were reported regarding its effect in transient global ischemia. To further elucidate the mechanism of PBN action, we have studied the effect of PBN on animal survival, histopathological outcome, and activation of caspase-3 following 30 min of global ischemia in vehicle- and PBN-treated rats. The results showed that 30 min of global ischemia was such a severe insult that no animal could survive beyond 2 d of reperfusion. Histopathological evaluation showed severe tissue edema and microinfarct foci in the neocortex and thalamus. Close to 100% damage was observed in the stratum and hippocampal CA1, CA3, and dentate gyrus subregions. Postischemic PBN treatment significantly enhanced animal survival and reduced damage in the neocortex, thalamus, and hippocampus. Immunohistochemistry demonstrated that caspase-3 was activated following ischemia in the striatum and the neocortex. PBN suppressed the activation of caspase-3 in both structures. It is concluded that PBN is a potent neuroprotectant against both focal and global ischemia; besides its function as a free radical scavenger, PBN may reduce ischemic brain damage by blocking cell death pathways that involve caspase-3 activation.  相似文献   

5.
In this study, we tested the hypothesis that MCI-186 (3-methyl-1-phenyl-2-pyrazolin-5-one; edaravone), a novel free radical scavenger, protects against acute experimental autoimmune myocarditis (EAM) in rats by the radical scavenging action associated with the suppression of cytotoxic myocardial injury. Recent evidence suggests that oxidative stress may play a role in myocarditis. We administered MCI-186 intraperitoneally at 1, 3, and 10 mg.kg(-1).day(-1) to rats with EAM for 3 wk. The results were compared with untreated rats with EAM. MCI-186 treatment did not affect hemodynamics. MCI-186 treatment (3 and 10 mg.kg(-1).day(-1)) reduced the severity of myocarditis as assessed by comparing the heart-to-body weight ratio and pathological scores. Myocardial interleukin-1beta (IL-1beta)-positive cells and myocardial oxidative stress overload with DNA damage in rats with EAM given MCI-186 treatment were significantly less compared with those of the untreated rats with EAM. In addition, MCI-186 treatment decreased not only the myocardial protein carbonyl contents but also the myocardial thiobarbituric acid reactive substance products in rats with EAM. The formation of hydroxyl radicals in MCI-186-treated heart homogenates was decreased compared with untreated heart homogenates. Furthermore, cytotoxic activities of lymphocytes of rats with EAM treated with MCI-186 were significantly lower compared with those of the untreated rats with EAM. Hydroxyl radicals may be involved in the development of myocarditis. MCI-186 protects against acute EAM in rats associated with scavenging hydroxyl free radicals, resulting in the suppression of autoimmune-mediated myocardial damage associated with reduced oxidative stress state.  相似文献   

6.
Cerebral edema contributes significantly to morbidity and death associated with many common neurological disorders. However, current treatment options are limited to hyperosmolar agents and surgical decompression, therapies introduced more than 70 years ago. Here we show that mice deficient in aquaporin-4 (AQP4), a glial membrane water channel, have much better survival than wild-type mice in a model of brain edema caused by acute water intoxication. Brain tissue water content and swelling of pericapillary astrocytic foot processes in AQP4-deficient mice were significantly reduced. In another model of brain edema, focal ischemic stroke produced by middle cerebral artery occlusion, AQP4-deficient mice had improved neurological outcome. Cerebral edema, as measured by percentage of hemispheric enlargement at 24 h, was decreased by 35% in AQP4-deficient mice. These results implicate a key role for AQP4 in modulating brain water transport, and suggest that AQP4 inhibition may provide a new therapeutic option for reducing brain edema in a wide variety of cerebral disorders.  相似文献   

7.
8.
Free radical reduction in the human epidermis   总被引:1,自引:0,他引:1  
The human epidermis presents the first line of defense against invading free radicals. Therefore, the surface of the skin must be equipped to deal with both the penetration of ultra-violet light as well as the neutralization of reactive photochemical products such as superoxide anion radical, hydrogen peroxide and especially hydroxyl radicals. Consequently, the human epidermis contains a variety of anti-oxidants to reduce oxygen radicals and hydrogen peroxide. The photochemical production of hydroxyl radicals, from both extracellular and intracellular hydrogen peroxide, is of special significance to the integrity of cells in the human epidermis. Recently, both biochemical and clinical studies on the healthy human population, and on patients with pigmentation disorders, suggested a connection between free radical defense by plasma membrane associated thioredoxin reductase and melanin biosynthesis. This research provided the first evidence for a direct relationship between free radical concentration and pigmentation. Furthermore, this system has been shown to be regulated by both extracellular and intracellular calcium concentrations. Clinical studies show depigmentation disorders vitiligo and tyrosinase positive albinism (Hermansky-Pudlak syndrome) appear to have defective calcium uptake systems influencing both free radical defense and melanin biosynthesis.  相似文献   

9.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a major role in cholesterol homeostasis through enhanced degradation of the LDL receptor (LDLR) in liver. As novel inhibitors/silencers of PCSK9 are now being tested in clinical trials to treat hypercholesterolemia, it is crucial to define the physiological consequences of the lack of PCSK9 in various organs. LDLR regulation by PCSK9 has not been extensively described during mouse brain development and injury. Herein, we show that PCSK9 and LDLR are co-expressed in mouse brain during development and at adulthood. Although the protein levels of LDLR and apolipoprotein E (apoE) in the adult brain of Pcsk9(-/-) mice are similar to those of wild-type (WT) mice, LDLR levels increased and were accompanied by a reduction of apoE levels during development. This suggests that the upregulation of LDLR protein levels in Pcsk9(-/-) mice enhances apoE degradation. Upon ischemic stroke, PCSK9 was expressed in the dentate gyrus between 24 h and 72 h following brain reperfusion. Although mouse behavior and lesion volume were similar, LDLR protein levels dropped ~2-fold less in the Pcsk9(-/-)-lesioned hippocampus, without affecting apoE levels and neurogenesis. Thus, PCSK9 downregulates LDLR levels during brain development and following transient ischemic stroke in adult mice.  相似文献   

10.

Background

The Mannose-binding lectin (MBL) pathway of complement plays a pivotal role in the pathogenesis of ischemia/reperfusion (I/R) injury after experimental ischemic stroke. As comparable data in human ischemic stroke are limited, we investigated in more detail the association of MBL deficiency with infarction volume and functional outcome in a large cohort of patients receiving intravenous thrombolysis or conservative treatment.

Methodology/Principal Findings

In a post hoc analysis of a prospective cohort study, admission MBL concentrations were determined in 353 consecutive patients with an acute ischemic stroke of whom 287 and 66 patients received conservative and thrombolytic treatment, respectively. Stroke severity, infarction volume, and functional outcome were studied in relation to MBL concentrations at presentation to the emergency department. MBL levels on admission were not influenced by the time from symptom onset to presentation (p = 0.53). In the conservative treatment group patients with mild strokes at presentation, small infarction volumes or favorable outcomes after three months demonstrated 1.5 to 2.6-fold lower median MBL levels (p = 0.025, p = 0.0027 and p = 0.046, respectively) compared to patients with more severe strokes. Moreover, MBL deficient patients (<100 ng/ml) were subject to a considerably decreased risk of an unfavorable outcome three months after ischemic stroke (adjusted odds ratio 0.38, p<0.05) and showed smaller lesion volumes (mean size 0.6 vs. 18.4 ml, p = 0.0025). In contrast, no association of MBL concentration with infarction volume or functional outcome was found in the thrombolysis group. However, the small sample size limits the significance of this observation.

Conclusions

MBL deficiency is associated with smaller cerebral infarcts and favorable outcome in patients receiving conservative treatment. Our data suggest an important role of the lectin pathway in the pathophysiology of cerebral I/R injury and might pave the way for new therapeutic interventions.  相似文献   

11.
12.
We tested the hypothesis that hyperbaric oxygenation (HBO) generates free radicals in the brain before the onset of neurological manifestations of central nervous system (CNS) oxygen poisoning. Chronically cannulated, conscious rats were individually placed in a transparent pressure chamber and exposed to (1) 5 atmospheres absolute (ATA) oxygen for 15 min (n = 4); (2) 5 ATA oxygen for 30 min (n = 5), during which no visible convulsions occurred; (3) 5 ATA oxygen for 30 min with recurrent convulsions (n = 6); (4) 5 ATA oxygen until the appearance of the first visible convulsions (n = 5); (5) 4 ATA oxygen for 60 min during which no convulsions occurred (n = 5); and (6) 5 ATA air for 30 min (n = 5, controls). Immediately before compression, 1 mL of 0.1 M of alpha-phenyl-N-tert-butyl nitrone (PBN) was administered intravenously (iv) for spin trapping. At the termination of each experiment, rats were euthanized by pentobarbital iv and decompressed within 1 min. Brains were rapidly removed for preparation of lipid extracts (Folch). The presence of PBN spin adducts in the lipid extracts was examined by electron spin resonance (ESR) spectroscopy. ESR spectra from unconvulsed rats exposed to 5 ATA oxygen for 30 min revealed both oxygen-centered and carbon-centered PBN spin adducts in three of the five brains. One of the five rats in this group showed an ascorbyl signal in the ESR spectrum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose of the present study is to determine the effects of early decrease in the lesion size on late brain tissue loss, synaptogenesis and functionality after a focal brain lesion in rats. The lesion was induced either to the cortex using the photothrombotic ischemic stroke or to the striatum using the malonate poisoning model. The cortical and striatal lesions amounted to 66-80 mm(3) at day 1 post-lesion and were reduced by 50% after the acute administration of dipyridyl (a liposoluble iron chelator) and aminoguanidine (an inhibitor of the inducible nitric oxide synthase), respectively. Loss of histologically intact tissue and synaptophysin expression as an indicator of synaptogenesis were examined at day 35 post-lesion. Both types of lesion resulted in synaptophysin upregulation in contralateral and ipsilateral cortical areas. On the contrary, brain tissue loss was greater after the striatal (-17%) than the cortical lesion (-5%). Synaptophysin expression and tissue loss were not different between drug- and vehicle-treated rats. Moreover, a set of standard neurological tests revealed a difference in deficit between the both types of lesion, yet only in the acute post-lesion stage. However, it did not distinguish between vehicle- and drug-treated rats whatever the lesion location. Our results indicate that late histological endpoints measurements are not recommended to probe the potential neuroprotective properties of a drug administered within the acute post-lesion stage. They also suggest that inhibition of cytotoxic mechanisms involved in lesion growth is of no clinical interest when it cannot lead to a long-term histological protection and/or increased synaptogenesis.  相似文献   

14.
Following the onset of an ischemic brain injury, the excitatory neurotransmitter glutamate is released. The excitotoxic effects of glutamate are a major contributor to the pathogenesis of a stroke. The aim of this study was to examine if overexpression of a glutamate transporter (GLT-1) reduces ischemic brain injury in a rat model of stroke. We generated an adeno-associated viral (AAV) vector expressing the rat GLT-1 cDNA (AAV-GLT1). Functional expression of AAV-GLT1 was confirmed by increased glutamate clearance rate in non-stroke rat brain as measured by in vivo amperometry. AAV-GLT1 was injected into future cortical region of infarction 3 weeks prior to 60 min middle cerebral artery occlusion (MCAo). Tissue damage was assessed at one and two days after MCAo using TUNEL and TTC staining, respectively. Behavioral testing was performed at 2, 8 and 14 days post-stroke. Animals receiving AAV-GLT1, compared to AAV-GFP, showed significant decreases in the duration and magnitude of extracellular glutamate, measured by microdialysis, during the 60 minute MCAo. A significant reduction in brain infarction and DNA fragmentation was observed in the region of AAV-GLT1 injection. Animals that received AAV-GLT1 showed significant improvement in behavioral recovery following stroke compared to the AAV-GFP group. We demonstrate that focal overexpression of the glutamate transporter, GLT-1, significantly reduces ischemia-induced glutamate overflow, decreases cell death and improves behavioral recovery. These data further support the role of glutamate in the pathogenesis of ischemic damage in brain and demonstrate that targeted gene delivery to decrease the ischemia-induced glutamate overflow reduces the cellular and behavioral deficits caused by stroke.  相似文献   

15.
Mesenchymal stem cells-based therapy of brain ischemic stroke in rat   总被引:3,自引:0,他引:3  
Mesenchymal stem cells (MSCs)-based therapy is a promising modern attempt to improve the recovery after stroke. Experiments were carried out on inbred Wistar-Kyoto rats. MSCs were isolated, expanded in cultute and labeled with vital fluorescent dye PKH-26. Animals were subjected to middle cerebral artery occlusion (MCAO), followed by injection of 5 x 10(6) rat MSCs into the tail vein 3 days after MCAO. Control group animals received PBS injection (negative control). Therapy results were estimated by the following parameters: behavioral and neurological testing, the brain injure area, the state of damaged region "border" zone and the vessels quantity in the "borden" area. It was shown that control group animals (PBS injection) did not restore their initial behavioral and neurological state, while the experimental group animals (MSCs injection) showed the same parameters as intact rats at 2-3 weeks after MCAO. The size of the damaged region in the control group was approximately 1.5 as large as in the experimental group. The damage in the experimental group was limited to neocortex; caudate nucleus, capsula externa and piriform cortex remained uninjured. Small vessels quantity in the "border" regions was twine higher compared to control group and was approximately equal to an intact brain vessel number. Moreover, it was shown for the first time that after MSCs transplantation the vessels quantity in the neocortex and caudate putamen of contralateral hemisphere was twice as much as in control. We demonstrated that the MSCs transplantation definitely exerted a positive influence upon the brain tissue reparation after stroke.  相似文献   

16.
Mesenchymal stem cell (MSCs)-based therapy is a promising attempt to improve the recovery after stroke. Our experiments were carried out on inbred Wistar-Kyoto rats. MSCs were isolated, expanded in culture, and labeled with vital fluorescent dye PKH-26. Animals were subjected to middle cerebral artery occlusion (MCAO). After three days, MCAO 5 × 106 isolated MSCs were injected into the tail vein of the experimental rats. The control animal group received PBS injections (negative control). Therapy results were evaluated by the following parameters: behavioral and neurological testing, the inured brain areas, damaged brain structures, neuron state, and vessel quantity in the region close to with necrosis zone. It was shown that control animals (PBS injection) did not return to their initial behavioral and neurological state within 6 weeks, while the experimental animals (MSCs injection), within 2–3 weeks after MCAO, had parameters like intact rats. The size of the damaged region in the control group was larger than in the experimental group by a factor of approximately 1.3. The damage in MSC-treated rats was limited to the neocortex; caudate nucleus, capsula externa and piriform cortex remained uninjured. The small vessel quantity in the “border” regions was twice as high as compared to the control group and approximately equal to the number of vessels in an intact brain. For the first time, we demonstrated that the vessel quantity in the neocortex and caudate nucleus of the contralateral hemisphere after MSC transplantation was twice as high as in control rats. It is concluded that the MSC transplantation exerts a beneficial influence upon the brain tissue reparation after stroke.  相似文献   

17.
In the current study, we established a novel murine ischemic brain damage model using a photochemical reaction to evaluate the recovery of neurological dysfunction and brain repair reactions. In this model, reproducible damage was induced in the frontal lobe of the cortex, which was accompanied by neurological dysfunction. Sequential changes in damage size, microglial accumulation, astrocyte activation, and neurological dysfunction were studied in C57BL/6J and BALB/c mouse strains. Although the initial size of damage was comparable in both strains, the extent of damage was later reduced to a greater extent in C57BL/6J mice than that in BALB/c mice. In addition, C57BL/6J mice showed later edema clearance until day 7, less microglial accumulation, and relatively more astrocyte activation on day 7. Neurologic dysfunction was evaluated by three behavioral tests: the von Frey test, the balance beam test, and the tail suspension test. The behavioral abnormalities evaluated by these tests were remarkable following the induction of damage and recovered by day 21 in both strains. However, the abnormalities were more prominent and the recovery was later in C57BL/6J mice. These findings demonstrate that our novel ischemic stroke model is useful for evaluating brain repair reactions and the recovery of neurological dysfunction in mice with different genetic backgrounds. In addition, we found that both the brain repair reactions and the recovery of neurological dysfunction after comparable ischemic brain damage varied between strains; in that, they both occurred later in C57BL/6J mice.  相似文献   

18.
Ionizing radiation (IR) can generate reactive oxygen species (ROS). Excessive ROS have the potential to damage cellular macromolecules including DNA, proteins, and lipids and eventually lead to cell death. In this study, we evaluated the potential of arbutin, a drug chosen from a series of traditional herbal medicine by measuring intracellular hydroxyl radical scavenging ability in X-irradiated U937 cells. Arbutin (hydroquinone-β-D-glucopyranoside), a naturally occurring glucoside of hydroquinone, has been traditionally used to treat pigmentary disorders. However, there are no reports describing the effect of arbutin on IR-induced apoptosis. We confirmed that arbutin can protect cells from apoptosis induced by X-irradiation. The combination of arbutin and X-irradiation could reduce intracellular hydroxyl radical production and prevent mitochondrial membrane potential loss. It also could down-regulate the expression of phospho-JNK, phospho-p38 in whole cell lysate and activate Bax in mitochondria. Arbutin also inhibits cytochrome C release from mitochondria to cytosol. To verify the role of JNK in X-irradiation-induced apoptosis, the cells were pretreated with a JNK inhibitor, and found that JNK inhibitor could reduce apoptosis induced by X-irradiation. Taken together, our data indicate that arbutin plays an anti-apoptotic role via decreasing intracellular hydroxyl radical production, inhibition of Bax-mitochondria pathway and activation of the JNK/p38 MAPK pathway.  相似文献   

19.
20.
We describe here a new strategy for the treatment of stroke, through the inhibition of NAALADase (N-acetylated-alpha-linked-acidic dipeptidase), an enzyme responsible for the hydrolysis of the neuropeptide NAAG (N-acetyl-aspartyl-glutamate) to N-acetyl-aspartate and glutamate. We demonstrate that the newly described NAALADase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) robustly protects against ischemic injury in a neuronal culture model of stroke and in rats after transient middle cerebral artery occlusion. Consistent with inhibition of NAALADase, we show that 2-PMPA increases NAAG and attenuates the ischemia-induced rise in glutamate. Both effects could contribute to neuroprotection. These data indicate that NAALADase inhibition may have use in neurological disorders in which excessive excitatory amino acid transmission is pathogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号