首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction between TCRs and peptides presented by MHC molecules determines the specificity of the T cell-mediated immune response. To elucidate the biologically important structural features of this interaction, we generated TCR beta-chain transgenic mice using a TCR derived from a T cell clone specific for the immunodominant peptide of vesicular stomatitis virus (RGYVYQGL, VSV8) presented by H-2K(b). We immunized these mice with VSV8 or analogs substituted at TCR contact residues (positions 1, 4, and 6) and analyzed the CDR3alpha sequences of the elicited T cells. In VSV8-specific CTLs, we observed a highly conserved residue at position 93 of CDR3alpha and preferred Jalpha usage, indicating that multiple residues of CDR3alpha are critical for recognition of the peptide. Certain substitutions at peptide position 4 induced changes at position 93 and in Jalpha usage, suggesting a potential interaction between CDR3alpha and position 4. Cross-reactivity data revealed the foremost importance of the Jalpha region in determining Ag specificity. Surprisingly, substitution at position 6 of VSV8 to a negatively charged residue induced a change at position 93 of CDR3alpha to a positively charged residue, suggesting that CDR3alpha may interact with position 6 in certain circumstances. Analogous interactions between the TCR alpha-chain and residues in the C-terminal half of the peptide have not yet been revealed by the limited number of TCR/peptide-MHC crystal structures reported to date. The transgenic mouse approach allows hundreds of TCR/peptide-MHC interactions to be examined comparatively easily, thus permitting a wide-ranging analysis of the possibilities for Ag recognition in vivo.  相似文献   

2.
A B cell line, B6-1710, that expresses the defective virus known to induce murine AIDS stimulates a large fraction of nonprimed splenic T cells. Analysis of the T cell population responding to the B6-1710 for TCR V beta-chain usage revealed that, in addition to the previously reported V beta 5-chain-positive T cells, T cells bearing V beta 11 and V beta 12 are also specifically enriched. We have established V beta 5+ T cell lines, clones, and hybridomas expressing identical TCR with different CD4/CD8 phenotypes and demonstrated that T cell reactivity to B6-1710 is, although not absolute, dependent on the presence of CD4 molecules. Further analysis of T cell hybridomas with known J beta-chain usage revealed that D beta- and J beta-chain usage do not play crucial roles in T cell reactivity to B6-1710 B cells. However, T cell hybridomas derived from TCR-V beta gene transgenic mice were found to be heterogeneous for their reactivity to B6-1710, suggesting that the V alpha-chains associating with the transgenic V beta-chain determine T cell responsiveness to B6-1710. These data clearly demonstrate that T cell reactivity to a murine AIDS virus expressing B cell line resembles that previously reported for Mls-like superantigens.  相似文献   

3.
T cell responses against hapten-modified peptides play an important role in the pathogenesis of certain diseases, including contact dermatitis and allergy. However, the structural features of TCRs recognizing bulky, potentially mobile hapten groups remain poorly defined. To analyze the structural basis of TCR recognition of defined hapten-modified peptides, the immunodominant octapeptide derived from vesicular stomatitis virus nucleoprotein (VSV8) was modified with a trinitrophenyl (TNP) group at the primary TCR contact residues (position 4 or 6) and used for immunization of mice carrying either the TCR alpha- or beta-chain of a VSV8 (unmodified)/H-2K(b)-specific CTL clone as a transgene. Such mice allow independent analysis of one TCR chain by maintaining the other fixed. The TCR V gene usage of the responding T cell population was specifically altered depending upon the presence of the TNP group and its position on the peptide. The CDR3 sequences of the TNP-modified peptide-specific TCRs showed a preferential J region usage in both the CDR3alpha and beta loops, indicating that the J regions of both CDR3s are critical for recognition of TNP-modified peptides. In contrast to our previous observations showing the prime importance of CDR3beta residues encoded by D-segment or N-addition nucleotides for recognition of position 6 of unmodified VSV8, our studies of TNP-modified peptides demonstrate the importance of the Jbeta region, while the Jalpha region was crucial for recognizing both TNP-modified and unmodified peptides. These data suggest that different structural strategies are utilized by the CDR3alpha and beta loops to allow interaction with a haptenated peptide.  相似文献   

4.
Using TCR V beta 5 transgenic mice as a model system, we demonstrate that the induction of peripheral tolerance can mold the TCR repertoire throughout adult life. In these mice, three distinct populations of peripheral T cells are affected by chronic selective events in the lymphoid periphery. First, CD4+V beta 5+ T cells are deleted in the lymphoid periphery by superantigens encoded by mouse mammary tumor viruses-8 and -9 in an MHC class II-dependent manner. Second, mature CD8+V beta 5+ T cells transit through a CD8lowV beta 5low deletional intermediate during tolerance induction by a process that depends upon neither mouse mammary tumor virus-encoded superantigens nor MHC class II expression. Third, a population of CD4-CD8-V beta 5+ T cells arises in the lymphoid periphery in an age-dependent manner. We analyzed the TCR V alpha repertoire of each of these cellular compartments in both V beta 5 transgenic and nontransgenic C57BL/6 mice as a function of age. This analysis revealed age-related changes in the expression of V alpha families among different cellular compartments, highlighting the dynamic state of the peripheral immune repertoire. Our work indicates that the chronic processes maintaining peripheral T cell tolerance can dramatically shape the available TCR repertoire.  相似文献   

5.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

6.
Tumor infiltrating lymphocytes (TIL) can be isolated from solid tumors and selectively expanded in long term culture with IL-2 and autologous irradiated tumor. Such long term cultured cells express anti-tumor activity in vitro, mediate the regression of established tumor in murine models of cancer, and have been used for the treatment of cancer in humans. We have characterized freshly isolated mouse Thy-1+ TIL populations, as well as long term TIL cultures, from several different C57BL/6 (B6) tumors. Freshly isolated Thy-1+ TIL include both CD4+ and CD8+ cells, as well as cells bearing NK markers. These cells are predominantly TCR alpha beta+, with a smaller population of TCR gamma delta+ cells. The TCR alpha beta+ cells expressed a broad distribution of V beta phenotypes that was statistically different from that expressed in normal B6 splenic Thy-1+ cells or CD8+ cells, presumably reflecting in vivo selection in the host anti-tumor response. NK cells are present in these tumors at a greater frequency than noted in splenic T cells. Cultured TIL populations rapidly became exclusively Thy-1+/CD8+/CD4- and TCR alpha beta+/gamma delta-. Individual long term TIL populations initially expressed multiple V beta products, but rapidly restricted their V beta expression, frequently expressing a single dominant V beta. The identity of this dominant V beta varied among different TIL lines, but the overall representation of V beta phenotypes in these cultures was statistically different from that seen in Thy-1+ or CD8+ splenocytes. No statistical difference was noted between lines derived from antigenically distinct tumors. The selection of tumor specific T cells in vitro is therefore not reflected in any simple predominance of V beta usage. The complexity of TCR usage in the anti-tumor response may result from the involvement of multiple alpha- and beta-chain regions in the response to a single antigenic determinant, or may reflect multiple antigenic determinants expressed on a single syngeneic tumor.  相似文献   

7.
The Ag receptor of cytotoxic CD8+ T lymphocytes recognizes peptides of 8-10 aa bound to MHC class I molecules. This Ag recognition event leads to the activation of the CD8+ lymphocyte and subsequent lysis of the target cell. Altered peptide ligands are analogues derived from the original antigenic peptide that commonly carry amino acid substitutions at TCR contact residues. TCR engagement by these altered peptide ligands usually impairs normal T cell function. Some of these altered peptide ligands (antagonists) are able to specifically antagonize and inhibit T cell activation induced by the wild-type antigenic peptide. Despite significant advances made in understanding TCR antagonism, the molecular interactions between the TCR and the MHC/peptide complex responsible for the inhibitory activity of antagonist peptides remain elusive. To approach this question, we have identified altered peptide ligands derived from the vesicular stomatitis virus peptide (RGYVYQGL) that specifically antagonize an H-2Kb/vesicular stomatitis virus-specific TCR. Furthermore, by site-directed mutagenesis, we altered single amino acid residues of the complementarity-determining region 3 of the beta-chain of this TCR and tested the effect of these point mutations on Ag recognition and TCR antagonism. Here we show that a single amino acid change on the TCR CDR3 beta loop can modulate the TCR-antagonistic properties of an altered peptide ligand. Our results highlight the role of the TCR complementarity-determining region 3 loops for controlling the nature of the T cell response to TCR/altered peptide ligand interactions, including those leading to TCR antagonism.  相似文献   

8.
Despite the tremendous plasticity of the TCR repertoire, T cells recognize a limited number of antigenic sites (frequently a single site, or immunodominant epitope) on a complex protein Ag. Current models suggest that the immunodominant epitope of a complex protein is the processed peptide that binds to the MHC molecule with the highest affinity. Conversely, the inability of the T cell population to recognize a specific epitope, termed a "hole" in the repertoire, can prevent the immunodominance of a peptide despite efficient processing and MHC binding of the peptide. The role of specific TCR alpha- or beta-chains in determining MHC restriction and recognizing specific epitopes is complex and incompletely understood. To evaluate the contribution of each TCR chain to the functional diversity of the T cell repertoire, we investigated in vivo the T cell response to phage lambda-repressor protein in transgenic mice expressing a single rearranged beta-chain gene (C57L beta mice) in association with the complete germline alpha-chain repertoire. Our results demonstrate that expression of the TCR beta-chain transgene alters the immunodominant epitope recognized by T cells. However, after immunization with the appropriate peptide the transgenic mice can also respond to the nonimmunodominant epitope; thus, the expression of the TCR beta-chain transgene does not create a hole in the repertoire. These data indicate that the primary site, or immunodominant epitope, of an Ag recognized by T cells can be altered by the preimmune TCR repertoire independent of antigen processing and MHC affinity.  相似文献   

9.
Previous staining studies with TCR V alpha 11-specific mAbs showed that V alpha 11.1/11.2 (AV11S1 and S2) expression was selectively favored in the CD4+ peripheral T cell population. As this phenomenon was essentially independent of the MHC haplotype, it was suggested that AV11S1 and S2 TCRs exert a preference for recognition of class II MHC molecules. The V alpha segment of the TCR alpha-chain is suggested to have a primary role in shaping the T cell repertoire due to selection for class I or II molecules acting through the complementarity determining regions (CDR) 1 alpha and CDR2 alpha residues. We have analyzed the repertoire of V alpha 11 family members expressed in C57BL/6 mice and have identified a new member of this family; AV11S8. We show that, whereas AV11S1 and S2 are more frequent in CD4+ cells, AV11S3 and S8 are more frequent in CD8+ cells. The sequences in the CDR1 alpha and CDR2 alpha correlate with differential expression in CD4+ or CD8+ cells, a phenomenon that is also observed in BALB/c mice. With no apparent restriction in TCR J alpha usage or CDR3 alpha length in C57BL/6, these findings support the idea of V alpha-dependent T cell repertoire selection through preferential recognition of MHC class I or class II molecules.  相似文献   

10.
The glycoprotein B (gB) from herpes simplex virus type I is a major target of cytotoxic T lymphocytes (CTL) in C57BL/6 mice. The majority of these T cells are directed to a single Kb-restricted determinant, gB498-505. We have analyzed the T-cell receptor (TCR) usage in gB-specific CTL lines derived shortly after virus infection. The CTL populations preferentially used two V beta regions, a dominant V beta 10 element and a subdominant V beta 8 element. Detailed sequence analysis revealed considerable TCR beta-chain heterogeneity despite a striking level of predicted amino acid conservation at the V beta-D beta junction. This junction forms part of the third hypervariable loop of the TCR thought to directly contact the major histocompatibility complex-bound antigenic peptide. The results reveal considerable diversity within the primary T cells responding to a single viral determinant while still maintaining a high degree of TCR V beta bias and sequence conservation at the V-D-J junction.  相似文献   

11.
In Lewis rats, immunization with myelin basic protein induces two distinct encephalitogenic T cell populations, those responding to the immunodominant 72-89 epitope and those specific for a secondary epitope including residues 87-99. The 72-89 specific T cells were I-A restricted and preferentially expressed V beta 8.2 in their TCR. To determine the fine specificity, MHC restriction, and TCR V beta gene use in T cells reactive to the secondary epitope, we characterized 23 T cell clones from the lymph nodes (LN) and spinal cords (SC) of rats immunized with either whole basic protein or synthetic peptides S85-99 and S87-99 that were found to be functionally similar. The S85-99/S87-99 specific clones from LN and SC were all encephalitogenic despite differences in recognition of intact basic protein and class II MHC restriction. Unlike LN clones that overexpressed V beta 8 (46%+) and V beta 6 (31%+), however, SC clones were strongly biased (86%+) in their expression of V beta 6. This V gene bias raised the possibility of TCR peptide therapy using V beta 6 peptides. The V beta 6 sequence was similar to V beta 8.2 in the CDR2 region, and the corresponding peptides from this region were found to be cross-reactive in vivo. Moreover, both peptides were effective in the treatment of EAE induced with either S85-99, biased in V beta 6+ and V beta 8+ T cells, or guinea pig basic protein, biased only in V beta 8+ T cells. These data demonstrate the presence of common immunogenic epitopes among subsets of TCR V region gene families that possess important regulatory activity on effector T cell function.  相似文献   

12.
Analysis of TCR of a series of CD4-8- (double negative; DN) alpha beta T cell lines induced with IL-3 revealed that their V gene usage was biased for V alpha 4 and V beta 2. This has been confirmed in the primary short-term cultures. Thus, IL-3 induced the generation of DN alpha beta T cells with predominant V beta 2 gene expression from the CD4+/CD8+ T cell-depleted spleen or bone marrow (BM) cells of both normal and nude BALB/c mice within 10 days. It was further indicated that the V beta 2+ beta-chain genes contained few junctional N regions in both IL-3-induced primary DN alpha beta T cells and continuous lines. Search for the in vivo counterpart of in vitro IL-3-induced DN alpha beta T cells revealed that BM, but not spleens, of normal BALB/c and B6 mice did contain a significant proportion of DN alpha beta T cells, and that the majority of them expressed V beta 2+ beta-chain genes with few junctional N regions. The presence of V beta 2+ DN alpha beta T cells was similarly observed in the BM of BALB/c nude mice, but their proportion varied markedly among various strains of mice, which was not linked to H-2 haplotypes. The results indicated that V beta 2+ DN alpha beta T cells in the BM represented one of the thymus-independent T cell populations, whose development was under the major histocompatibility Ag complex-unlinked genetic control. TCR of these T cells were shown to be functional as judged by the proliferative response to anti-V beta 2 antibody. Taken together, present results suggested that IL-3 could induce differentiation and/or proliferation of DN alpha beta T cells with uniquely limited repertoire, which existed preferentially in BM in vivo, and implied the possible involvement of extrathymic endogenous ligands as a positive selection force.  相似文献   

13.
We examined TCR gene usage in a panel of beef insulin/I-Ad-restricted T cell hybrids obtained from BALB/c mice. These hybrids demonstrated several distinct patterns of reactivity defined by their ability to respond to species variants of insulin. Correlation of TCR-alpha and -beta-gene usage with these patterns of reactivity demonstrated that TCR gene usage was restricted within Ag reactivity groups. In particular, V-J junctional regions (CDR3 equivalent) were restricted with conserved junctional amino acid motifs present in both TCR-alpha- and -beta-chains. Comparison of TCR gene usage in hybrids expressing identical V alpha and V beta gene segments but demonstrating different patterns of reactivity revealed that changes in either J alpha and/or J beta gene segment usage could alter antigenic reactivity. Indeed, single or limited amino acid differences within the CDR3 region were sufficient to markedly alter fine specificity. These data demonstrate the critical role for CDR3 in determining antigenic reactivity in beef insulin-reactive hybrids and are compatible with the current model of TCR/peptide/MHC interaction.  相似文献   

14.
The immune response of Lewis rat lymph node T cells to guinea pig myelin basic protein (GP-BP) in experimental allergic encephalomyelitis is directed primarily against a region of basic protein encompassed by residues 72-89. T cells that respond to this epitope are restricted by the RT1.B class II molecule of the MHC and use V beta 8.2 exclusively in their TCR. A second region of GP-BP, residues 87-99, also induces experimental allergic encephalomyelitis in Lewis rats but this response is restricted primarily by RT1.D. Elsewhere we describe the biologic characteristics of T cell clones responding to the synthetic peptide, s87-99, and to a related peptide, s85-99. We present a detailed analysis of TCR V beta gene expression among these clones, derived from the lymph node and spinal cord of immunized animals, and among spinal cord derived T cell clones reactive to GP-BP 72-89. We find that spinal cord-derived clones, reactive to s85-99 and to s87-99, use V beta 6 predominantly. In contrast, T cell clones derived from lymph nodes and reactive to the same peptides express multiple V beta genes including V beta 6. This difference in heterogeneity of V beta usage at the clonal level is also seen in T cell lines derived from spinal cord and immune lymph node. DNA sequence comparison of the CDR3 regions in V beta 6+ spinal cord clones revealed a conserved amino acid motif also found in the majority of V beta 6 sequences from the spinal cord anti-s85-99 line. Although V beta 6 was expressed in some lymph node-derived clones, only one contained a CDR3 region similar to that seen in spinal cord isolates. All spinal cord-derived T cell clones reactive to GP-BP 72-89 used V beta 8.2 and most (five of six) contained the AspSer residues in CDR3 previously shown to be associated with V beta 8.2 receptors expressed by the majority of lymph node T cells responding to GP-BP 72-89. These data indicate that TCR V beta usage in peripheral T cells responding to an autoantigen does not always predict the V beta usage among T cells at the site of an autoimmune attack. Possible explantations for the relative homogeneity in TCR V beta expression seen in T cell clones derived from the spinal cord are discussed.  相似文献   

15.
CD8 is a heterodimeric membrane glycoprotein on MHC class I-restricted T lymphocytes that cooperates with the alpha beta CD3 TCR in the recognition of MHC class I molecules presenting antigenic peptides. Co-operation has two components: enhancement of the affinity of MHC/peptide-TCR interaction, and signal transduction through the T cell membrane. The cytolytic function of CTL is primarily dependent on the affinity-enhancement component of CD8-TCR cooperation whereas activation of resting CD8+ T cells is primarily dependent on transmembrane signaling. Using a panel of mAb, two to the alpha-chain and three to the beta-chain of CD8, we investigated the relationships between epitopes and functional regions of the CD8 molecule. Two of the antibodies, one to the alpha-chain and one to the beta-chain of CD8, inhibit the cytolytic function of CTL but not the generation of CTL from resting T cells. Another two antibodies, also one to the alpha- and one to the beta-chain, inhibited the generation of CTL while enhancing the cytolytic function of CTL. These results suggest that both the alpha- and beta-chain of CD8 possess two distinct regions, one involved in affinity enhancement and the other in transmembrane signaling. The former may be the MHC class I-binding region whereas the latter may associate with the alpha beta CD3 TCR. The data can explain the apparent functional equivalence of CD8 alpha alpha homodimers and alpha beta heterodimers.  相似文献   

16.
The Y-Ae mAb and the 1H3.1 TCR-alpha beta (V alpha 1/V beta 6) are two immune receptors specific for I-Ab MHC class II molecules complexed to the 52-68 fragment of the alpha-chain of I-E class II molecules (the E alpha 52-68 peptide). A profound intrathymic negative selection occurs in 1H3.1 TCR transgenic mice in the presence of an I-E alpha transgene. The administration of mAbs to 1H3.1/I-E alpha double-transgenic newborn mice reveals that Y-Ae, but not the isotype-matched anti-I-E Y17 mAb, rescues a significant number of mature (V beta 6highCD4+CD8-) thymocytes and allows the detection of E alpha 52-68-reactive T cells in the periphery. These observations indicate that deletion of autoreactive T cells can be specifically inhibited in vivo by an mAb specific for the deleting self-peptide:self-MHC class II complex. Similar inhibition experiments indicate that C57BL/6 (I-Ab+/I-E alpha-) mice constitutively express an E alpha-independent, Y-Ae-recognizable epitope(s). This finding is confirmed by the phenotypic analysis of mature (MHC class II high) C57BL/6 bone marrow-derived dendritic cells. Collectively, these observations further illustrate the peptide specificity of negative selection and demonstrate that MHC class II-positive cells from unmanipulated C57BL/6 mice that lack a functional I-E alpha gene can assemble one or more self-peptide:I-Ab complexes recognizable by the E alpha 52-68:I-Ab complex-specific Y-Ae mAb.  相似文献   

17.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

18.
Ag-specific CTL can protect against tumors and some viral infections and may be useful for adoptive immunotherapy. Here, we show that purified CD8+ T cells from naive C57BL/6 mice can be primed in vitro with different immunogenic peptides, which bind to MHC class I gene products, and IL-2 to exhibit specific and MHC-restricted effector function in vitro and in vivo protection against lymphocytic choriomeningitis virus infection and B16.F10 melanoma lung metastases. Limiting dilution assays in the absence of feeder cells with highly purified CD8+ T cells from two transgenic mice strains, each expressing a different MHC class I-restricted TCR, indicated that only peptide and IL-2, but not TCR- cells, were required for the growth of naive CD8+ T cells. These alternative minimal requirements for the activation and expansion of specific CD8+ T lymphocytes, without the need for professional APC, may be exploited for adoptive immunotherapy.  相似文献   

19.
20.
Many virus infections give rise to surprisingly limited T-cell responses directed to very few immunodominant determinants. We have been examining the cytotoxic T-lymphocyte (CTL) response to herpes simplex virus type 1 (HSV-1) infection. Previous studies have identified the glycoprotein B-derived peptide from residues 498 to 505 (gB(498-505)) as one of at least three determinants recognized by HSV-1-specific CTLs isolated from C57BL/6 mice. We had previously found that in vitro-derived CTLs directed to gB(498-505) show a characteristic pattern of T-cell receptor (TCR) usage, with 60% of gB(498-505)-specific CD8(+) T cells expressing BV10(+) TCR beta chains and a further 20% expressing BV8S1. In this report, we confirm that this TCR V-region bias is also reflected in the ex vivo response to HSV-1 infection. A high proportion of activated CD8(+) draining lymph node cells were found to express these dominant V regions, suggesting that a substantial number of in vivo responding T cells were directed to this one viral determinant. The use of an HSV-1 deletion mutant lacking the gB(498-505) determinant in combination with accurate intracellular gamma interferon staining allowed us to quantify the extent of gB-specific T-cell dominance. Together, these results suggested that between 70 and 90% of all CD8(+) HSV-1-specific T cells target gB(498-505). While deletion of this determinant resulted in an attenuated CD8(+) T-cell response, it also permitted the emergence of one or more previously unidentified cryptic specificities. Overall, HSV-1 infection of C57BL/6 mice results in an extremely focused pattern of CD8(+) T-cell selection in terms of target specificity and TCR expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号