首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism for the reduced hepatic production of triacylglycerol in the presence of eicosapentaenoic acid was explored in short-term experiments using cultured parenchymal cells and microsomes from rat liver. Oleic, palmitic, stearic, and linoleic acids were the most potent stimulators of triacyl[3H]glycerol synthesis and secretion by hepatocytes, whereas erucic, alpha-linolenic, gamma-linolenic, arachidonic, docosahexaenoic, and eicosapentaenoic acids (in decreasing order) were less stimulatory. There was a linear correlation (r = 0.85, P less than 0.01) between synthesis and secretion of triacyl[3H]glycerol for the fatty acids examined. The extreme and opposite effects of eicosapentaenoic and oleic acids on triacylglycerol metabolism were studied in more detail. With increasing number of free fatty acid molecules bound per molecule of albumin, the rate of synthesis and secretion of triacyl[3H]glycerol increased, most markedly for oleic acid. Cellular uptake of the two fatty acids was similar, but more free eicosapentaenoic acid accumulated intracellularly. Eicosapentaenoic acid caused higher incorporation of [3H]water into phospholipid and lower incorporation into triacylglycerol and cholesteryl ester as compared to oleic acid. No difference was observed between the fatty acids on incorporation into cellular free fatty acids, monoacylglycerol and diacylglycerol. The amount of some 16- and 18-carbon fatty acids in triacylglycerol was significantly higher in the presence of oleic acid compared with eicosapentaenoic acid. Rat liver microsomes in the presence of added 1,2-dioleoyl-glycerol incorporated eicosapentaenoic acid and eicosapentaenoyl-CoA into triacylglycerol to a lesser extent than oleic acid and its CoA derivative. Decreased formation of triacylglycerol was also observed when eicosapentaenoyl-CoA was given together with oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linoleoyl-CoA, linolenoyl-CoA, and arachi-donoyl-CoA had no inhibitory effect. In conclusion, inhibition of acyl-CoA:1,2-diacylglycerol O-acyltransferase (EC 2.3.1.20) by eicosapentaenoic acid may be important for reduced synthesis and secretion of triacylglycerol from the liver.  相似文献   

2.
The human intestinal cell line, CaCo-2, was used to study the effect of the n-3 fatty acid, eicosapentaenoic acid, on triacylglycerol secretion. In cells incubated with 250 microM eicosapentaenoic acid, the incorporation of [3H]glycerol into triacylglycerols secreted into the medium was decreased by 58% compared to cells incubated with 250 microM oleic acid. The incorporation of [3H]glycerol into cellular triacylglycerols was decreased 32% in cells incubated with eicosapentaenoic acid. In cells preincubated with [3H]glycerol to label existing triacylglycerols, the rates of secretion of preformed triacylglycerols were similar in response to the addition of either fatty acid. Initial uptake rates of the n-3 fatty acid were higher than for oleic acid. Both eicosapentaenoic acid and oleic acid were minimally oxidized to CO2. Oleic acid was predominantly incorporated into cellular triacylglycerols (62% vs. 47%), whereas more eicosapentaenoic acid was incorporated into cellular phospholipids (46% vs. 30%). Phospholipids of microsomes prepared from cells incubated with eicosapentaenoic acid were enriched in this fatty acid. The rate of synthesis of triacylglycerol and diacylglycerol acyltransferase activities were significantly less in microsomes prepared from cells incubated with eicosapentaenoic acid. Triacylglycerol mass secreted by CaCo-2 cells incubated with either fatty acid was similar. In CaCo-2 cells, eicosapentaenoic acid decreases the synthesis and secretion of newly synthesized triacylglycerol without decreasing the secretion of triacylglycerol mass. Modification of microsomal membrane phospholipid fatty acid composition is associated with a decrease in microsomal triacylglycerol synthesis and diacylglycerol acyltransferase activities.  相似文献   

3.
The effects of eicosapentaenoic acid on synthesis and secretion of cholesterol and cholesterol ester by cultured rat hepatocytes were studied. In the presence of eicosapentaenoic acid cellular cholesterol esterification was decreased by 50-75% compared to oleic acid as measured by radioactive precursors and mass. Secretion of cholesterol ester was reduced by 50-60% in the presence of eicosapentaenoic acid as evaluated by radiolabeled fatty acids, mevalonolactone, and mass measurement. Oleic, palmitic, and stearic acid increased, whereas eicosapentaenoic and docosahexaenoic acid decreased synthesis and secretion of cholesterol ester as compared to a fatty acid-free control. Cellular and secreted free cholesterol were unaffected by eicosapentaenoic acid in comparison with oleic acid. The reduced cholesterol esterification was observed within 1 h and lasted for at least 20 h. Eicosapentaenoic acid caused lower cholesterol esterification than oleic acid in the concentration range 0.2-1.0 mM fatty acid and reduced the stimulatory effect of oleic acid on cholesterol ester formation. Cholesterol esterification and release of cholesterol ester were markedly increased by 25-hydroxycholesterol in the presence of eicosapentaenoic acid as well as oleic acid. Experiments with liver microsomes revealed that radioactive eicosapentaenoic acid and eicosapentaenoyl-CoA were poorer substrates (7-30%) for cholesterol esterification than oleic acid and oleoyl-CoA. Reduced formation of cholesterol ester was also observed when eicosapentaenoyl-CoA was given together with labeled oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linolenoyl-CoA, and arachidonoyl-CoA had no inhibitory effect. In conclusion, eicosapentaenoic acid reduced cellular cholesterol esterification by inhibiting the activity of acyl-CoA:cholesterol acyltransferase. The lowered cholesterol esterification caused by eicosapentaenoic acid secondly decreased secretion of very low density lipoprotein cholesterol ester.  相似文献   

4.
CaCo-2 cells, grown on filter membranes, were used to study the effects of fatty acids on cellular metabolism of triacylglycerol and phospholipids. The rate of triacylglycerol secretion was enhanced more than 2-fold, from 1 to 2 weeks after reaching confluency, in the presence of 0.6 mM fatty acids. Triacylglycerol secretion and oxidation of oleic acid increased 2- and 9-fold, respectively, with this culture system, as compared to cells grown on conventional plastic dishes. Eicosapentaenoic acid (20:5 n-3), when compared to oleic acid, did not reduce formation of triacylglycerol or enhance phospholipid synthesis in CaCo-2 cells during short term (less than 24 h) experiments, when the cells resided on membranes, regardless of what type of radioisotopes were used as precursors in the incubation media. However, the n-3 fatty acid was preferentially incorporated into phosphatidylinositol, lysophosphatidylcholine, and sphingomyelin, as compared to oleic acid. The disappearance from the apical medium and cellular uptake of labeled eicosapentaenoic and oleic acid were similar during incubations up to 24 h, and the metabolism of these fatty acids to acid-soluble materials and CO2 was equal. Light scattering analysis indicated that secreted lipoproteins of density less than 1.006 g/ml were in the same size-range as chylomicrons derived from human plasma. Assessment of secreted apolipoprotein B showed that by incubating CaCo-2 cells with oleic acid, apolipoprotein B levels increased approximately 1.4-fold when compared to cells incubated with eicosapentaenoic acid, whereas the amount of triacylglycerol and size-range of particles were similar for the two fatty acids. Our data indicate that CaCo-2 cells grown on filter membranes exhibit enterocyte-like characteristics with the ability to synthesize and secrete chylomicrons. Eicosapentaenoic acid and oleic acid are absorbed, metabolized, and influence secretion of lipoprotein particles in a similar way, except for some differences in incorporation of the fatty acids into certain phospholipid classes and a reduced secretion of apolipoprotein B. The culture conditions, including time after confluency and cellular support, are critical for the rate of secretion in the presence of eicosapentaenoic acid and oleic acid.  相似文献   

5.
The effects of eicosapentaenoic acid and oleic acid on lipid synthesis and secretion by HepG2 cells were examined to identify fatty acid specific changes in lipid metabolism that might indicate a basis for the hypolipidemic effect attributed to eicosapentaenoic acid and related n-3 fatty acids. Cellular glycerolipid synthesis, as determined by [3H]glycerol incorporation, increased in a concentration-dependent manner in cells incubated 4 h with either eicosapentaenoic acid or oleic acid at concentrations between 10 and 300 microM. [3H]Glycerol-labeled triglyceride was the principal lipid formed and increased approximately fourfold with the addition of 300 microM oleic acid or eicosapentaenoic acid. Both fatty acids also produced a 20-40% increase in the total cellular triglyceride mass. Although both fatty acids increased triglyceride synthesis to similar extents, eicosapentaenoic acid-treated cells secreted 40% less [3H]glycerol-labeled triglyceride than cells fed oleic acid. Cellular synthesis of [3H]glycerol-labeled phosphatidylethanolamine and phosphatidylcholine was also reduced by 40% and 30%, respectively, in cells given eicosapentaenoic acid versus cells given oleic acid. Similar results were obtained in determinations of radiolabeled oleic acid and eicosapentaenoic acid incorporation. At a fatty acid concentration of 300 microM, incorporation of radiolabeled eicosapentaenoic acid into cellular triglycerides was greater than the incorporation obtained with radiolabeled oleic acid, while the reverse relationship was observed for the formation of phosphatidylcholine from the same fatty acids. Eicosapentaenoic acid is as potent as oleic acid in inducing triglyceride synthesis but eicosapentaenoic acid is a poorer substrate than oleic acid for phospholipid synthesis. The intracellular rise in de novo-synthesized triglyceride in eicosapentaenoic acid-treated cells without corresponding increases in triglyceride secretion suggests that eicosapentaenoic acid is less effective than oleic acid in promoting the transfer of de novo-synthesized triglyceride to nascent very low density lipoproteins.  相似文献   

6.
Cultured rat hepatocytes were incubated in medium containing 1.0 mM oleic acid. The incorporation of [3H]glycerol into cell-associated and medium triacylglycerols was measured after 2 h incubation. More than 95% of the secreted [3H]triacylglycerols were recovered in the very low density lipoprotein (VLDL) fraction (d less than 1.006). Chloroquine and other lysosomotropic amines promoted a marked decrease in [3H]triacylglycerol secretion from the hepatocytes while the synthesis was unaffected. At 50-200 microM final concentration, chloroquine inhibited secretion of triacylglycerols by 70-90% of the control. Similar results were obtained when the mass of secreted triacylglycerols was measured. Chloroquine caused decreased secretion of [3H]triacylglycerols after 15-30 min incubation and the inhibitory effect was completely reversible within 1-2 h after washout of chloroquine. The reduced triacylglycerol secretion was not due to increased reuptake of secreted lipoproteins or decreased protein synthesis caused by chloroquine. Electron microscopy of chloroquine-treated cells showed that the inhibition of VLDL secretion occurs at or prior to the level of the Golgi apparatus. These results suggest that chloroquine interferes with crucial steps in the secretory process and/or that lysosomal function could be essential for secretion of VLDL.  相似文献   

7.
We have investigated whether the presence of other fatty acids in physiologic amounts will influence the effects of eicosapentaenoic acid on cellular lipid metabolism and prostaglandin production. Eicosapentaenoic acid uptake by cultured bovine aortic endothelial cells was time and concentration dependent. At concentrations between 1 and 25 microM, most of the eicosapentaenoic acid was incorporated into phospholipids and of this, 60-90% was present in choline phosphoglycerides. Eicosapentaenoic acid inhibited arachidonic acid uptake and conversion to prostacyclin (prostaglandin I2) but was not itself converted to eicosanoids. Only small effects on the uptake of 10 microM eicosapentaenoic acid occurred when palmitic, stearic or oleic acids were added to the medium in concentrations up to 75 microM. In contrast, eicosapentaenoic acid uptake was reduced considerably by the presence of linoleic, n-6 eicosatrienoic, arachidonic or docosahexaenoic acids. Although a 100 microM mixture of palmitic, stearic, oleic and linoleic acid (25:10:50:15) had little effect on the uptake of 10 or 20 microM eicosapentaenoic acid, less of this acid was channeled into endothelial phospholipids. However, the fatty acid mixture did not prevent the inhibitory effect of eicosapentaenoic acid on prostaglandin I2 formation in response to either arachidonic acid or ionophore A23187. An 8 h exposure to eicosapentaenoic acid was required for the inhibition to become appreciable and, after 16 h, prostaglandin I2 production was reduced by as much as 60%. These findings indicate that the capacity of aortic endothelial cells to produce prostaglandin I2 is decreased by continuous exposure to eicosapentaenoic acid. Even if the eicosapentaenoic acid is present as a small percentage of a physiologic fatty acid mixture, it is still readily incorporated into endothelial phospholipids and retains its inhibitory effect against endothelial prostaglandin I2 formation. Therefore, these actions may be representative of the in vivo effects of eicosapentaenoic acid on the endothelium.  相似文献   

8.
The level of circulating triacylglycerols is determined by the balance between their delivery into the plasma and their removal from it. Plasma triacylglycerols are derived either from dietary fat as chylomicrons or from endogenous hepatic synthesis as very low density lipoproteins. Their removal occurs through the action of lipoprotein lipase after which the fatty acids are either stored in adipose tissue or oxidized, primarily in skeletal muscle and heart. The composition of the diet has been shown to influence many of these processes. Hepatic fatty acid synthesis and triacylglycerol secretion are affected by the quantity and composition of dietary fat, carbohydrate, and protein. Polyunsaturated but not saturated fats reduce hepatic fatty acid synthesis by decreasing the amount of the lipogenic enzymes needed for de novo fatty acid synthesis. Dietary fish oils are particularly effective at reducing both fatty acid synthesis and triacylglycerol secretion and as a result are hypotriacylglycerolemic, particularly in hypertriacylglycerolemic individuals. In addition, dietary fish oils can increase the oxidation of fatty acids and lead to increased activity of lipoprotein lipase in skeletal muscle and heart. It appears that the hypotriacylglycerolemic effect of dietary fish oils is mediated by effects on both synthesis and removal of circulating triacylglycerols.  相似文献   

9.
Isolated rat hepatocytes in suspension secrete very low density lipoproteins (VLDL) at a rate comparable with that of the perfused liver. The apoproteins of these lipoproteins are mainly of the B and E type. The amount of apoprotein C in VLDL secreted by hepatocytes is much less than that present in VLDL obtained from rat serum. Incubation of hepatocytes in the presence of fatty acids stimulates the intracellular synthesis of triacylglycerols and their secretion in VLDL. This stimulation is a linear function of the palmitic acid concentration up to 1.6 mm, the highest concentration tested. Colchicine (50 μm) reduced VLDL secretion by 90%. The stimulation of triacylglycerol synthesis and VLDL secretion upon incubation of hepatocytes with fatty acids is paralleled by an enhanced activity of microsomal diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), the only enzyme exclusively involved in the synthesis of triacylglycerols. A mixture of oleic (0.2 mm) and palmitic (0.2 mm) acid added to the cell medium stimulates the activity of DGAT by 354%. This increase in enzyme activity persisted during cell homogenization and subsequent preparation of microsomes to assay the enzyme. It is concluded that freshly isolated hepatocytes in suspension represent a good system to study triacylglycerol synthesis and VLDL secretion, and that the stimulatory effects of fatty acids on these processes are, at least partially, mediated by enhanced activities of DGAT.  相似文献   

10.
The fatty acid analogue tetradecylthioacetic acid (TTA) has previously been shown to decrease triacylglycerol secretion in CaCo-2 cells (Gedde-Dahl et al., J. Lipid Res. 36 (1995) 535-543). The present study was designed to further elucidate the effect of TTA on lipoprotein production in CaCo-2 cells. TTA did not affect oleic acid-induced triacylglycerol synthesis, but it significantly decreased secretion of newly synthesized triacylglycerol when compared to cells incubated with oleic acid alone or oleic acid in combination with palmitic acid. In contrast, pulse-chase experiments showed no difference in the amount of labeled triacylglycerol secreted from cells exposed to either fatty acid combination during the chase period, indicating that TTA did not affect the secretory process in general. Cells incubated with TTA alone secreted triacylglycerol present at 1.025相似文献   

11.
The experiments reported here allowed us to compare the metabolism of neutral lipids from extracellular origin (lipoproteins) and endogenous origin (triacylglycerol biosynthesis induced by feeding cells with high levels of free fatty acid) in normal and acid-lipase-deficient fibroblasts (Wolman's disease). When the cells were grown in hyperlipemic-rich medium, a major neutral lipid storage appeared in normal as well as in acid-lipase-deficient cells; this storage disappeared rapidly in normal cells during the 'chase', whereas in Wolman cells, the storage of cholesteryl esters and triacylglycerols remained unchanged, or only decreased very slowly. When the cells were fed with high levels of radiolabelled oleic acid, a major accumulation of radiolabelled triacylglycerols was observed. These cytoplasmic triacylglycerols were similarly degraded in normal and Wolman fibroblasts during the 'chase' period. From these results it was concluded that the neutral lipids stored in lysosomes of Wolman fibroblasts are only of extracellular origin (lipoproteins), whereas triacylglycerols biosynthesized by the cells do not participate in this accumulation. Therefore, both cellular compartments involved in triacylglycerol metabolism (lysosomes containing exogenous lipids and cytoplasmic granules of endogenously biosynthesized triacylglycerols) are strictly independent.  相似文献   

12.
The influence of taurocholate on very low density lipoprotein (VLDL) triacylglycerol synthesis and secretion was studied by isolated rat liver-parenchymal cells. The incorporation of [3H]glycerol into cell-associated and VLDL triacylglycerols were measured after incubation in medium containing 0.75 mM oleate. Taurocholate caused a maked decrease in VLDL [3H]triacylglycerol secretion from the hepatocytes: 50-150 microM taurocholate inhibited secretion of VLDL [3H]triacylglycerols by 70-90%. Similar results were obtained when the mass of secreted VLDL triacylglycerols was measured. Taurocholate caused a decreased secretion of VLDL [3H]triacylglycerols after 15-30 min incubation. A higher amount of cellular triacylglycerols was found in taurocholate-supplemented cells. Furthermore taurocholate did not change the intracellular lipolysis of triacylglycerols. These results suggest that bile acids interfere more probably with the assembly and/or secretion of VLDL-particles and not with earlier stages of VLDL formation, e.g. triacylglycerol synthesis.  相似文献   

13.
The oleaginous yeast Yarrowia lipolytica has an outstanding capacity to produce and store triacylglycerols resembling adipocytes of higher eukaryotes. Here, the identification of two genes YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encoding major triacylglycerol synthases of Yarrowia lipolytica is reported. Heterologous expression of either DGA1 or LRO1 in a mutant of the budding yeast Saccharomyces cerevisiae defective in triacylglycerol synthesis restores the formation of this neutral lipid. Whereas Dga1p requires acyl-CoA as a substrate for acylation of diacylglycerol, Lro1p is an acyl-CoA independent triacylglycerol synthase using phospholipids as acyl-donor. Growth of Yarrowia lipolytica strains deleted of DGA1 and/or LRO1 on glucose containing medium significantly decreases triacylglycerol accumulation. Most interestingly, when oleic acid serves as the carbon source the ratio of triacylglycerol accumulation in mutants to wild-type is significantly increased in strains defective in DGA1 but not in lro1Δ. In vitro experiments revealed that under these conditions an additional acyl-CoA dependent triacylglycerol synthase contributes to triacylglycerol synthesis in the respective mutants. Taken together, evidence is provided that Yarrowia lipolytica contains at least four triacylglycerol synthases, namely Lro1p, Dga1p and two additional triacylglycerol synthases whereof one is acyl-CoA dependent and specifically induced upon growth on oleic acid.  相似文献   

14.
The optimum cofactor requirements for triacylglycerol biosynthesis in rat adipose-tissue homogenates containing mitochondrial, microsomal and cytosolic fractions were investigated. In general the optimum concentrations of cofactors for triacylglycerol biosynthesis were found to differ from those for total fatty acid esterification. The results provided further evidence for the key role of phosphatidate phosphohydrolase in the regulation of triacylglycerol biosynthesis. Albumin was included in the incubation medium to permit the use of concentrations of added fatty acids that would swamp the effects of endogenous fatty acids. The addition of albumin had little effect on the incorporation of palmitic acid and stearic acid into lipids including triacylglycerols. By contrast, a critical concentration of albumin (about 60 muM) was required before incorporation of oleic acid or linoleic acid into triacylglycerols occurred. The system was used to study the incorporation of different 1-14C-labelled fatty acids from a mixture of unesterified fatty acids [palmitic acid 30%; stearic acid 10%; oleic acid 40%; linoleic acid 20% (molar percentages)] separately into the positions 1,2 and 3 of triacyl-sn-glycerols. In general the stereo-specific distribution of the labelled fatty acids incorporated into triacylglycerols paralleled the normal distribution of fatty acids within rat adipose-tissue triacylglycerols, suggesting that the specificities of the relevant acyltrasferases have the major role in determining the positional distribution of fatty acids within triacylglycerols.  相似文献   

15.
Triacylglycerol lipase activity in the rabbit renal medulla   总被引:1,自引:0,他引:1  
Although the renal medulla is rich in triacylglycerols, the lipolysis of these intracellular triacylglycerols by a renomedullary triacylglycerol lipase has not been directly demonstrated. The present study demonstrates triacylglycerol lipase activity localized in the particulate subcellular fractions of rabbit renal medullae. Renomedullary triacylglycerol lipase activity, as determined by the hydrolysis of [14C]triolein to [14C]oleic acid, was observed to have a pH optimum of 5.8. Addition of cAMP/ATP/magnesium acetate resulted in an 80% activation of crude homogenate triacylglycerol lipase activity; addition of exogenous cAMP-dependent protein kinase resulted in a further activation of lipolysis. 3 mM CaCl2 had no effect on basal triacylglycerol lipase activity. 1 M NaCl did not inhibit lipolysis, suggesting that the lipase activity measured was not due to lipoprotein lipase. Endogenous renomedullary triacylglycerols were hydrolysed by a lipase in the 100,000 X g pellet of renomedullary homogenates, resulting in the release of free fatty acids including arachidonic and adrenic acids. Dispersed renomedullary cells were prepared to monitor hormone-sensitive triacylglycerol lipase activity in intact cells. Addition of 10 microM forskolin and 10 microM epinephrine resulted in 8-fold and 50-fold increases in triacylglycerol lipase activity, respectively, as defined by release of free glycerol from the cells. These studies demonstrate that a cAMP-dependent hormone-sensitive triacylglycerol lipase is present in the renal medulla, and is responsible for the hydrolysis of renomedullary triacylglycerols.  相似文献   

16.
In primary cultures of rat hepatocytes, prostaglandin E2 and prostaglandin D2 (PGE2 and PGD2) inhibited the secretion of very low density lipoprotein (VLDL)-associated apoB, triacylglycerol, and cholesterol. These effects were concentration-dependent and remained apparent for at least 3 days of culture without an effect on the apoB/triacylglycerol ratio of the secreted VLDL. Prostaglandins had no effect on the overall synthesis of triacylglycerol but triacylglycerol accumulated within the cells, without intracellular accumulation of apoB. PGE2, when added to the medium together with glucagon, increased the inhibition of VLDL secretion, compared to that observed with glucagon alone. However, PGE2 did not increase the stimulatory effect of glucagon on ketogenesis. Unlike glucagon, the prostaglandins did not inhibit fatty acid synthesis nor did they stimulate ketogenesis or production of cAMP. Thus, of all the parameters of hepatic lipid metabolism studied, PGE2 and PGD2 selectively affected VLDL. Selective inhibition of VLDL secretion was also observed with the calcium antagonist verapamil. The divalent cation ionophore A23187 also inhibited VLDL release but, in contrast, also inhibited fatty acid and cholesterol synthesis. The results suggest that VLDL secretion is modulated at some optimal cell calcium concentration that may be mediated selectively by agents such as prostaglandins.  相似文献   

17.
18.
The effects of oleic acid on the activities of cytosolic HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase, AcAc-CoA (acetoacetyl-CoA) thiolase and AcAc-CoA synthetase, as well as microsomal HMG-CoA reductase, all enzymes in the pathway of cholesterol biosynthesis, were studied in the isolated perfused rat liver. Oleic acid bound to bovine serum albumin, or albumin alone, was infused for 4 h at a rate sufficient to sustain an average concentration of 0.61 +/- 0.05 mM fatty acid during the perfusion. Hepatic cytosol and microsomal fractions were isolated at the termination of the perfusion. Oleic acid simultaneously increased the activities of the cytosolic cholesterol-biosynthetic enzymes 1.4-2.7-fold in livers from normal fed rats and from animals fasted for 24 h. These effects were accompanied by increased net secretion by the liver of cholesterol and triacylglycerol in the very-low-density lipoprotein (VLDL). We confirmed the observations reported previously from this laboratory of the stimulation by oleic acid of microsomal HMG-CoA reductase. In cytosols from perfused livers, the increase in AcAc-CoA thiolase activity was characterized by an increase in Vmax. without any change in the apparent Km of the enzyme for AcAc-CoA. In contrast, oleic acid decreased the Km of HMG-CoA synthase for Ac-CoA, without alteration of the Vmax. of the enzyme. The Vmax. of AcAc-CoA synthetase was increased by oleic acid, and there was a trend towards a small increase in the Km of the enzyme for acetoacetate. These data allow us to conclude that the enzymes that supply the HMG-CoA required for hepatic cholesterogenesis are stimulated, as is HMG-CoA reductase, by a physiological substrate, fatty acid, that increases rates of hepatic cholesterol synthesis and cholesterol secretion. Furthermore, we suggest that these effects of fatty acid on hepatic cholesterol metabolism result from stimulation of secretion of triacylglycerol in the VLDL by fatty acids, and the absolute requirement of cholesterol as an important structural surface component of the VLDL necessary for transport of triacylglycerol from the liver.  相似文献   

19.
Long-chain polyunsaturated fatty acids (LC-PUFA) are important in the development of the immature nervous system, and adding these fatty acids to infant formula has been proposed. To determine the effect of n-3 LC-PUFA on apolipoprotein secretion and lipid synthesis in newborn swine enterocytes, differentiated IPEC-1 cells were incubated for 24 h with docosahexaenoic acid (DHA; 22:6) or eicosapentaenoic acid (EPA; 20:5) complexed with albumin at a fatty acid concentration of 0.8 mM or albumin alone (control) added to the apical medium. Oleic acid (OA; 18:1) was used a control for lipid-labeling studies. Both DHA and EPA reduced apolipoprotein (apo) B secretion by one-half, whereas EPA increased apo A-I secretion. The increased apo A-I secretion occurred primarily in the high-density lipoprotein fraction. These changes in apoprotein secretion were not accompanied by significant changes in synthesis. Modest decreases in apo B mRNA levels were observed for DHA and EPA, whereas there were no changes in apo A-I mRNA abundance. EPA reduced cellular triacylglycerol labeling by one-half, and DHA and EPA decreased cellular phospholipid labeling compared with OA. Labeled triacylglycerol secretion was decreased 75% by EPA, and DHA doubled labeled phospholipid secretion. If present in vivo, these effects should be considered before supplementing infant formula with these fatty acids.  相似文献   

20.
Tgl3p, Tgl4p and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae catalyzing degradation of triacylglycerols stored in lipid droplets. Previous results from our laboratory (Athenstaedt and Daum, 2005, J. Biol. Chem. 280, 37301–37309) demonstrated that a yeast strain lacking all three triacylglycerol lipases accumulates not only triacylglycerols at high amount, but also steryl esters. Here we show a metabolic link between synthesis and mobilization of non-polar lipids. In particular, we demonstrate that a block in tri-acylglycerol degradation in a tgl3?tgl4?tgl5? triple mutant lacking all major triacylglycerol lipases causes marked changes in non-polar lipid synthesis. Under these conditions formation of triacylglycerols is reduced, whereas steryl ester synthesis is enhanced as shown by quantification of non-polar lipids, in vivo labeling of lipids using [14C]oleic acid and [14C]acetic acid as precursors, and enzyme analyses in vitro. In summary, this study demonstrates that triacylglycerol metabolism and steryl ester metabolism are linked processes. The importance of balanced storage and degradation of these components for lipid homeostasis in the yeast is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号