首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IEF, using 6 M urea, provides a unique opportunity to analyze the spectrotypes of antibodies in immune complexes (IC) in vivo. Using this technique, we have analyzed the clonotypes of anti-DNA antibodies expressing specific Id in the circulating IC of patients with active lupus nephritis. Serum anti-ssDNA and anti-dsDNA antibodies showed heterogeneous spectrotypes. The antibodies isolated from circulating IC had a restricted clonotype and a neutral charge and were directed mainly to ssDNA and, to a lesser extent, to dsDNA. These samples failed to form complexes with DNA when they were subjected to absorption to a DNA-coupled Sepharose column. Anti-DNA antibodies expressed specific Id, termed O-81 or NE-1, which were detected only in the IC of patients with active lupus nephritis. Anti-DNA clonotypes, including O-81 and NE-1 idiotypes, were also found in the eluates of renal glomeruli of lupus patients. These results indicate that subpopulations of anti-DNA antibodies in circulating IC are limited, and may play an important role in the pathogenesis of lupus nephritis.  相似文献   

2.
Anti-DNA Abs commonly found in patients with systemic lupus erythematosus are thought to play an important pathogenic role in lupus nephritis. Anti-DNA Abs may contribute to renal disease by cross-reactivity with renal Ags, the identity of which remain elusive. To identify a target Ag for pathogenic anti-DNA Abs, we performed Western blotting and immunoprecipitations of mesangial cell lysates from the lupus-prone MRL-lpr/lpr mouse and a nonautoimmune BALB/c mouse with the pathogenic anti-DNA Ab R4A. We found that R4A (but not a nonpathogenic Ab mutant of R4A) binds to and immunoprecipitates a 100-kDa protein expressed on the cell surface and in lysates of MRL-lpr/lpr mesangial cells. DNase treatment of the lysate and of the R4A Ab did not effect binding, indicating that the binding of R4A to the 100-kDa protein was direct and not mediated by an antigenic bridge containing DNA. Binding was greatly diminished in BALB/c lysates, suggesting that Ag expression or availability at the level of the target organ may be a factor in determining susceptibility to lupus nephritis. Following identification of this 100-kDa protein as nonmuscle alpha-actinin, binding of R4A to alpha-actinin was confirmed by Western blot, ELISA, inhibition studies, and immunofluorescence. High titers of anti-alpha-actinin Abs were present in sera and kidney eluates of lupus mice with active nephritis. These results indicate that the nephritogenicity of some anti-DNA Abs may be mediated via cross-reactivity with alpha-actinin. Furthermore, variations in target Ag display between individuals may underlie differential susceptibility to anti-DNA Ab-induced renal disease.  相似文献   

3.
The pathogenesis of SLE is commonly attributed to the deposition of circulating immune complexes consisting of DNA and anti-DNA autoantibodies. However, recent work has shown multiple cross-reactions between anti-DNA antibodies and a variety of cellular and extracellular Ag. To test the possibility that these antibodies interact directly with glomerular Ag and induce kidney dysfunction, we applied mouse and human anti-DNA IgG to the isolated perfused rat kidney. The NZB/NZW mouse monoclonal anti-DNA bound to glomerular Ag with a concomitant induction of proteinuria and a decrease in inulin clearance. The albumin excretion was 2301 +/- 734 micrograms/min at 160 min of perfusion, as compared with 85 +/- 21 micrograms/min in controls (p less than 0.001). The inulin clearance was reduced to 0.17 +/- 0.02 ml/min as compared with 0.28 +/- 0.09 ml/min in controls (p less than 0.05). Polyclonal anti-DNA IgG obtained from patients with lupus nephritis bound to rat glomeruli and induced albumin excretion of 542 +/- 217 micrograms/min at 160 min of perfusion, as compared with 163 +/- 77 micrograms/min in controls (p = NS). The addition of plasma as a source of C to the human IgG increased the proteinuria markedly (albumin excretion of 1115 +/- 195 micrograms/min at 160 min of perfusion, p less than 0.02), probably due to C activation. Preincubation of the reactive mouse and human IgG with DNA completely abolished their binding to renal tissue and its physiologic consequences. These results suggest that direct binding of anti-DNA antibodies to renal Ag may play an important role in the induction of lupus nephritis.  相似文献   

4.
Target Ag display is a necessary requirement for the expression of certain immune-mediated kidney diseases. We previously had shown that anti-DNA Abs that cross-react with alpha-actinin may be important in the pathogenesis of murine and human lupus nephritis; in murine models, we had found that a significant proportion of pathogenic serum and kidney-deposited Igs are alpha-actinin reactive. Furthermore, a pathogenic anti-DNA/alpha-actinin Ab showed enhanced binding to immortalized mesangial cells (MCs) derived from a lupus prone MRL-lpr/lpr mouse as compared with MCs from BALB/c mice which are not susceptible to spontaneous lupus, suggesting that kidney alpha-actinin expression may be contributing to nephritis. In the current study, we established that two isoforms of alpha-actinin that are present in the kidney, alpha-actinin 1 and alpha-actinin 4, can both be targeted by anti-alpha-actinin Abs. We found novel sequence polymorphisms between MRL-lpr/lpr and BALB/c in the gene for alpha-actinin 4. Moreover, alpha-actinin 4 and a splice variant of alpha-actinin 1 were both expressed at significantly higher levels (mRNA and protein) in MCs from the lupus prone MRL-lpr/lpr strain. Significantly, we were able to confirm these differences in intact kidney by examining glomerular Ig deposition of anti-alpha-actinin Abs. We conclude that enhanced alpha-actinin expression may determine the extent of Ig deposition in the Ab-mediated kidney disease in lupus. Modulation of Ag expression may be a promising approach to down-regulate immune complex formation in the target organ in individuals with circulating pathogenic Abs.  相似文献   

5.
In order to identify unique structural features of pathogenic autoantibodies to DNA in SLE, a murine anti-anti-DNA (anti-Id) mAb (mAb 1C7) was produced in response to immunization of lupus mice with a syngeneic anti-DNA mAb (mAb 3E10). Immunization of lupus mice with mAb 3E10 inhibited production of native anti-DNA antibodies, suppressed development of lupus kidney disease (nephritis), and induced production of anti-anti-DNA (anti-Id) antibodies. mAb 1C7 bound F(ab')2 fragments of mAb 3E10, and it bound other murine anti-DNA mAb, but not murine mAb or polyclonal serum antibodies unreactive with DNA. Moreover, binding of mAb 1C7 anti-Id to mAb 3E10 was inhibited by DNA, suggesting anti-Id binding within or near the binding site for DNA. Furthermore, mAb 1C7 bound serum IgG immunoglobulins from 9/12 patients with lupus nephritis and serum anti-DNA antibodies compared to only 3/12 SLE patients with comparable serum levels of anti-DNA antibodies, but without nephritis (p = 0.04), and only 1/53 SLE patients without serum anti-DNA antibodies, 0/49 patients with rheumatoid arthritis, and 1/47 healthy subjects (p less than 0.001). These results provide evidence that mAb 1C7 identifies a conserved Id associated with anti-DNA antibodies in murine and human SLE and may be useful as a structural probe to characterize pathogenic anti-DNA antibodies in SLE.  相似文献   

6.
Because TNF and IL-1 can initiate immunologic and inflammatory events alone or synergistically, a local increase in the levels of one or both of these cytokines in vivo may cause irreparable tissue damage. The purpose of this study was to evaluate local TNF and IL-1 beta gene expression in vivo in the kidneys of MRL-Ipr mice with autoimmune lupus nephritis. TNF mRNA was detected in the renal cortex of MRL-Ipr mice but was not present in the cortex of normal congenic MRL-++ or C3H/FeJ mice. MRL-Ipr mice with lupus nephritis expressed higher amounts of TNF mRNA compared with MRL-Ipr mice prior to disease. In addition, freshly isolated, unstimulated glomeruli from MRL-Ipr mice with nephritis were found to secrete detectable levels of TNF, whereas glomeruli from MRL-++ mice did not. IL-1 beta mRNA, present in the renal cortex of C3H/FeJ, MRL-++, and young MRL-Ipr mice with normal kidneys, was also more abundantly expressed in MRL-Ipr mice with nephritis. Cultured macrophages from glomeruli of mice with nephritis were found to express TNF and IL-1 beta mRNA and product. These macrophages are prominent only in MRL-Ipr mice with renal disease and are the likely source of increased gene expression for both cytokines.  相似文献   

7.
MRL/Mp-lpr/lpr (MRL/1) mice spontaneously develop autoimmune diseases like systemic lupus erythematosus (SLE) from 2 months of age, accompanied by massive lymphadenopathy. Such mice of 2 months of age were treated with 1 microgram cholera toxin (CT) every 7 days and/or with 400 rad of one-shot 60Co irradiation. CT treatment alone markedly improved nephritis as evaluated by proteinuria and moderately suppressed lymphadenopathy and anti-DNA antibody production, while irradiation alone prominently improved lymphadenopathy but showed little effect on both nephritis and anti-DNA antibody production. On the other hand, when mice were treated with the combination of CT plus irradiation, autoimmune nephritis as well as anti-DNA production and lymphadenopathy were almost completely inhibited. Taken together, each agent exerts the improvement effect at the different points from each other in an abnormal immunological circuit displayed in MRL/1 mice. This kind of combined treatment may be applicable to the clinical use for autoimmune diseases.  相似文献   

8.
Complement activation and tissue deposition of complement fragments occur during disease progression in lupus nephritis. Genetic deficiency of some complement components (e.g., Factor B) and infusion of complement inhibitors (e.g., Crry, anti-C5 Ab) protect against inflammatory renal disease. Paradoxically, genetic deficiencies of early components of the classical complement pathway (e.g., C1q, C4, and C2) are associated with an increased incidence of lupus in humans and lupus-like disease in murine knockout strains. Complement protein C3 is the converging point for activation of all three complement pathways and thus plays a critical role in biologic processes mediated by complement activation. To define the role of C3 in lupus nephritis, mice rendered C3 deficient by targeted deletion were backcrossed for eight generations to MRL/lpr mice, a mouse strain that spontaneously develops lupus-like disease. We derived homozygous knockout (C3(-/-)), heterozygous (C3(+/-)), and C3 wild-type (C3(+/+)) MRL/lpr mice. Serum levels of autoantibodies and circulating immune complexes were similar among the three groups. However, there was earlier and significantly greater albuminuria in the C3(-/-) mice compared with the other two groups. Glomerular IgG deposition was also significantly greater in the C3(-/-) mice than in the other two groups, although overall pathologic renal scores were similar. These results indicate that C3 and/or activation of C3 is not required for full expression of immune complex renal disease in MRL/lpr mice and may in fact play a beneficial role via clearance of immune complexes.  相似文献   

9.
Inducible costimulator (ICOS)-B7 homologous protein (B7h) is a new member of the CD28-B7 family of costimulatory molecules that regulates T cell-dependent humoral immune responses. In this study, we examined the involvement of this costimulatory pathway in the development and progression of lupus in NZB/W F(1) mice. Expression of ICOS on T cells was enhanced with disease progression, whereas B7h expression on B cells was down-regulated. Administration of anti-B7h mAb before the onset of renal disease significantly delayed the onset of proteinuria and prolonged survival. Blockade of B7h effectively inhibited all subclasses of IgG autoantibody production and accumulation of both Th1 and Th2 cells. Hypercellularity and deposition of IgG and C3 in glomeruli were significantly reduced. B7h blockade after the onset of proteinuria prevented the disease progression and improved the renal pathology. Our results demonstrated the involvement of the ICOS-B7h costimulatory pathway in the pathogenesis of lupus nephritis, and the blockade of this pathway may be beneficial for the treatment of human systemic lupus erythematosus.  相似文献   

10.
Antibodies to double-stranded DNA are important in the pathogenesis of nephritis, a major clinical manifestation in lupus patients. Since earlier diagnosis of renal involvement may lead to better outcomes, identification of the nephritogenic specificity of lupus-associated autoantibodies is important in understanding the disease, while monitoring their titer clinically may serve as an improved biomarker. Based upon work in animal models and cross-sectional human studies, kidney α-actinin was thought to be a plausible cross-reactive target for pathogenic lupus antibodies. Manson and colleagues longitudinally evaluated anti-nucleosome, anti-DNA, and anti-α-actinin antibodies in 16 lupus patients with new-onset nephritis. While anti-nucleosome and anti-DNA antibody levels were significantly associated and correlated with measures of kidney disease, these were not found to be significant with anti-α-actinin antibodies. While in lupus patients the diagnostic use of serum anti-α-actinin antibodies, alone or with other novel biomarkers, is still under investigation, such studies are vital in improving our monitoring of systemic lupus erythematosus patients and in developing new treatment paradigms that meet the continuing clinical challenge of lupus nephritis.  相似文献   

11.
A graft-vs-host (GVH) reaction of parental T cells in allogeneic F1 mice can lead to an autoimmune disease resembling human SLE. We analyzed the contribution of MHC genes to the development of IgG antinuclear antibody production and immune complex glomerulonephritis in MHC-congenic F1 recipients. DBA/2 T cells elicited IgG antibodies to histone, ssDNA, and dsDNA in all histoincompatible F1 recipients that were studied. The anti-DNA antibody responses were quantitatively similar among the F1 combinations and displayed comparable IgG2a subclass and cationic charge characteristics. In contrast, severe renal disease was manifested only in F1 mice that expressed H-2b encoded class II gene products. Disease susceptibility was associated with a decrease in circulating anti-DNA antibodies and a characteristic localization of immune complexes in the glomeruli. The data suggest that the production of potentially pathogenic IgG anti-nuclear antibodies is not sufficient for the development of renal disease in GVH-induced lupus. Thus, another event separate from autoantibody production is MHC dependent and appears to be critical for the formation and/or deposition of pathologic immune complexes.  相似文献   

12.
Many individuals develop a single or a few brief episodes of autoimmunity from which they recover. Mechanisms that quell pathologic autoimmunity following such a breakdown of self-tolerance are not clearly understood. In this study, we show that in nonautoimmune mice, dsDNA-specific autoreactive B cells exist but remain inactive. This state of inactivation in dsDNA-specific B cells could be disrupted by autoreactive Th cells; in this case T cells that react with peptides from the V(H) region of anti-DNA Abs (hereafter called anti-V(H) T cells). Immunization with anti-DNA mAb, its gamma-chain or peptides derived from its V(H) region induced anti-V(H) Th cells, IgG anti-dsDNA Ab, and proteinuria. The breakdown of B cell tolerance in nonautoimmune mice, however, was short-lived: anti-DNA Ab and nephritis subsided despite subsequent immunizations. The recovery from autoimmunity temporally correlated with the appearance of T cells that inhibited anti-DNA Ab production. Such inhibitory T cells secreted TGFbeta; the inhibition of anti-DNA Ab production by these cells was partly abolished by anti-TGFbeta Ab. Even without immunization, nonautoimmune mice possess T cells that can inhibit autoantibody production. Thus, inhibitory T cells in nonautoimmune mice may normally inhibit T-dependent activation of autoreactive B cells and/or reverse such activation following stimulation by Th cells. The induction of such inhibitory T cells may play a role in protecting nonautoimmune mice from developing chronic autoimmunity.  相似文献   

13.
In systemic lupus erythematosus, the renal deposition of complement-containing immune complexes initiates an inflammatory cascade resulting in glomerulonephritis. Activation of the classical complement pathway with deposition of C3 is pathogenic in lupus nephritis. Although the alternative complement pathway is activated in lupus nephritis, its role in disease pathogenesis is unknown. To determine the role of the alternative pathway in lupus nephritis, complement factor B-deficient mice were backcrossed to MRL/lpr mice. MRL/lpr mice develop a spontaneous lupus-like disease characterized by immune complex glomerulonephritis. We derived complement factor B wild-type (B+/+), homozygous knockout (B-/-), and heterozygous (B+/-) MRL/lpr mice. Compared with B+/- or B+/+ mice, MRL/lpr B-/- mice developed significantly less proteinuria, less glomerular IgG deposition, and decreased renal scores as well as lower IgG3 cryoglobulin production and vasculitis. Serum C3 levels were normal in the B-/- mice compared with significantly decreased levels in the other two groups. These results suggest that: 1) factor B plays an important role in the pathogenesis of glomerulonephritis and vasculitis in MRL/lpr mice; and 2) activation of the alternative pathway, either by the amplification loop or by IgA immune complexes, has a prominent effect on serum C3 levels in this lupus model.  相似文献   

14.
MRL/Mp-lpr/lpr (MRL/1) mice spontaneously develop autoimmune diseases like systemic lupus erythematosus (SLE) from 2 months of age, accompanied by massive lymphadenopathy. Such mice of 2 months of age were treated with 1g cholera toxin (CT) every 7 days and/or with 400 rad of one-shot60Co irradiation. CT treatment alone markedly improved nephritis as evaluated by proteinuria and moderately suppressed lymphadenopathy and anti-DNA antibody production, while irradiation alone prominently improved lymphadenopathy but showed little effect on both nephritis and anti-DNA antibody production. On the other hand, when mice were treated with the combination of CT plus irradiation, autoimmune nephritis as well as anti-DNA production and lymphadenopathy were almost completely inhibited. Taken together, each agent exerts the improvement effect at the different points from each other in an abnormal immunological circuit displayed in MRL/1 mice. This kind of combined treatment may be applicable to the clinical use for autoimmune diseases.  相似文献   

15.
In an effort to identify potential biomarkers in lupus nephritis, urine from mice with spontaneous lupus nephritis was screened for the presence of VCAM-1, P-selectin, TNFR-1, and CXCL16, four molecules that had previously been shown to be elevated in experimental immune nephritis, particularly at the peak of disease. Interestingly, all four molecules were elevated approximately 2- to 4-fold in the urine of several strains of mice with spontaneous lupus nephritis, including the MRL/lpr, NZM2410, and B6.Sle1.lpr strains, correlating well with proteinuria. VCAM-1, P-selectin, TNFR-1, and CXCL16 were enriched in the urine compared with the serum particularly in active disease, and were shown to be expressed within the diseased kidneys. Finally, all four molecules were also elevated in the urine of patients with lupus nephritis, correlating well with urine protein levels and systemic lupus erythematosus disease activity index scores. In particular, urinary VCAM-1 and CXCL16 showed superior specificity and sensitivity in distinguishing subjects with active renal disease from the other systemic lupus erythematosus patients. These studies uncover VCAM-1, P-selectin, TNFR-1, and CXCL16 as a quartet of molecules that may have potential diagnostic significance in lupus nephritis. Longitudinal studies are warranted to establish the clinical use of these potential biomarkers.  相似文献   

16.
DNA–protein interactions, including DNA–antibody complexes, have both fundamental and practical significance. In particular, antibodies against double-stranded DNA play an important role in the pathogenesis of autoimmune diseases. Elucidation of structural mechanisms of an antigen recognition and interaction of anti-DNA antibodies provides a basis for understanding the role of DNA-containing immune complexes in human pathologies and for new treatments. Here we used Molecular Dynamic simulations of bimolecular complexes of a segment of dsDNA with a monoclonal anti-DNA antibody’s Fab-fragment to obtain detailed structural and physical characteristics of the dynamic intermolecular interactions. Using a computationally modified crystal structure of a Fab–DNA complex (PDB: 3VW3), we studied in silico equilibrium Molecular Dynamics of the Fab-fragment associated with two homologous dsDNA fragments, containing or not containing dimerized thymine, a product of DNA photodamage. The Fab-fragment interactions with the thymine dimer-containing DNA was thermodynamically more stable than with the native DNA. The amino acid residues constituting a paratope and the complementary nucleotide epitopes for both Fab–DNA constructs were identified. Stacking and electrostatic interactions were shown to play the main role in the antibody–dsDNA contacts, while hydrogen bonds were less significant. The aggregate of data show that the chemically modified dsDNA (containing a covalent thymine dimer) has a higher affinity toward the antibody and forms a stronger immune complex. These findings provide a mechanistic insight into formation and properties of the pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus, associated with skin photosensibilization and DNA photodamage.  相似文献   

17.
Male BXSB mice, a mouse model of systemic lupus erythematosus, were given bone marrow transplants (BMT) at 20 wk of age using MHC-matched donor cells and nonmyeloablative conditioning (550 cGy irradiation). Transplanted mice and irradiation controls were followed for a period of 20 wk. Mice transgenic for green fluorescent protein were used as donors to allow tracking of donor cells and a determination of chimerism. Radiation controls had reduced renal pathology at 10 wk posttransplant, but not at 20 wk compared with untreated mice, while nonmyeloablative BMT mice had significantly reduced pathology at both time intervals. The monocytosis characteristic of older BXSB mice was also reduced by BMT, but the treatment did not prevent production of Ab to dsDNA. A stable chimerism of 24-40% donor CD45-positive cells was achieved in spleen and bone marrow, and there was no evidence of clinical graft vs host disease. Donor cells were detected in most recipient organs, notably the thymus and renal glomeruli. The results suggest that complete depletion of mature lymphocytes or of progenitor stem cells is not required to control lupus nephritis in BXSB mice.  相似文献   

18.
Basophils are of interest in immunology due to their ability to produce a Th2-signature cytokine, IL-4, following activation. A new understanding of the role of basophils in immunity shows novel functions at a cellular level through which basophils influence adaptive immunity. This review summarizes new advances in basophil biology and discusses new roles for basophils in human disease, especially in the mediation of the pathogenesis of lupus nephritis. Recently, basophils have been shown to contribute to self-reactive Ab production in systemic lupus erythematosus and may enhance pre-existing loss of B cell tolerance, suggesting that basophils, IL-4, and IgE mediate the pathogenesis of lupus nephritis by promoting the Th2 environment and activating autoreactive B cells. In addition to envisaging exciting therapeutic prospects, these novel findings open the way for the study of basophils in other autoimmune and renal diseases.  相似文献   

19.
20.
IntroductionPediatric systemic lupus erythematosus (pSLE) patients often initially present with more active and severe disease than adults, including a higher frequency of lupus nephritis. Specific autoantibodies, including anti-C1q, anti-DNA and anti-alpha-actinin, have been associated with kidney involvement in SLE, and DNA antibodies are capable of initiating early-stage lupus nephritis in severe combined immunodeficiency (SCID) mice. Over 100 different autoantibodies have been described in SLE patients, highlighting the need for comprehensive autoantibody profiling. Knowledge of the antibodies associated with pSLE and proliferative nephritis will increase the understanding of SLE pathogenesis, and may aid in monitoring patients for renal flare.MethodsWe used autoantigen microarrays composed of 140 recombinant or purified antigens to compare the serum autoantibody profiles of new-onset pSLE patients (n = 45) to healthy controls (n = 17). We also compared pSLE patients with biopsy-confirmed class III or IV proliferative nephritis (n = 23) and without significant renal involvement (n = 18). We performed ELISA with selected autoantigens to validate the microarray findings. We created a multiple logistic regression model, based on the ELISA and clinical information, to predict whether a patient had proliferative nephritis, and used a validation cohort (n = 23) and longitudinal samples (88 patient visits) to test its accuracy.ResultsFifty autoantibodies were at significantly higher levels in the sera of pSLE patients compared to healthy controls, including anti-B cell-activating factor (BAFF). High levels of anti-BAFF were associated with active disease. Thirteen serum autoantibodies were present at significantly higher levels in pSLE patients with proliferative nephritis than those without, and we confirmed five autoantigens (dsDNA, C1q, collagens IV and X and aggrecan) by ELISA. Our model, based on ELISA measurements and clinical variables, correctly identified patients with proliferative nephritis with 91 % accuracy.ConclusionsAutoantigen microarrays are an ideal platform for identifying autoantibodies associated with both pSLE and specific clinical manifestations of pSLE. Using multiple regression analysis to integrate autoantibody and clinical data permits accurate prediction of clinical manifestations with complex etiologies in pSLE.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0682-6) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号