首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processing of information in the cerebral cortex of primates is characterized by distributed representations and processing in neuronal assemblies rather than by detector neurons, cardinal cells or command neurons. Responses of individual neurons in sensory cortical areas contain limited and ambiguous information on common features of the natural environment which is disambiguated by comparison with the responses of other, related neurons. Distributed representations are also capable to represent the enormous complexity and variability of the natural environment by the large number of possible combinations of neurons that can engage in the representation of a stimulus or other content. A critical problem of distributed representation and processing is the superposition of several assemblies activated at the same time since interpretation and processing of a population code requires that the responses related to a single representation can be identified and distinguished from other, related activity. A possible mechanism which tags related responses is the synchronization of neuronal responses of the same assembly with a precision in the millisecond range. This mechanism also supports the separate processing of distributed activity and dynamic assembly formation. Experimental evidence from electrophysiological investigations of non-human primates and human subjects shows that synchronous activity can be found in visual, auditory and motor areas of the cortex. Simultaneous recordings of neurons in the visual cortex indicate that individual neurons synchronize their activity with each other, if they respond to the same stimulus but not if they are part of different assemblies representing different contents. Furthermore, evidence for synchronous activity related to perception, expectation, memory, and attention has been observed.  相似文献   

2.
We present an analysis of the conditions under which migration and global random factors may determine large scale synchrony in the dynamics of spatially structured populations. We derive an analytic approximation which describes how the desynchronizing influence of local environmental stochasticity combines with the synchronizing influences of larger scale environmental stochastic variation and migration to determine population cross correlation coefficients. Despite the simplifications made by this analysis, computer simulations show that the behaviour of more complicated models is well described by our approximation over considerable regions of parameter space. We conclude that population synchrony is largely determined by the coefficients of variation (CVs) of the local and larger scale stochastic processes, and that migration alone is only likely to maintain population synchrony when the CV of the local stochastic process is very small.  相似文献   

3.
Auditory streaming and visual plaids have been used extensively to study perceptual organization in each modality. Both stimuli can produce bistable alternations between grouped (one object) and split (two objects) interpretations. They also share two peculiar features: (i) at the onset of stimulus presentation, organization starts with a systematic bias towards the grouped interpretation; (ii) this first percept has 'inertia'; it lasts longer than the subsequent ones. As a result, the probability of forming different objects builds up over time, a landmark of both behavioural and neurophysiological data on auditory streaming. Here we show that first percept bias and inertia are independent. In plaid perception, inertia is due to a depth ordering ambiguity in the transparent (split) interpretation that makes plaid perception tristable rather than bistable: experimental manipulations removing the depth ambiguity suppressed inertia. However, the first percept bias persisted. We attempted a similar manipulation for auditory streaming by introducing level differences between streams, to bias which stream would appear in the perceptual foreground. Here both inertia and first percept bias persisted. We thus argue that the critical common feature of the onset of perceptual organization is the grouping bias, which may be related to the transition from temporally/spatially local to temporally/spatially global computation.  相似文献   

4.
Cortical circuits have been proposed to encode information by forming stable spatially structured attractors. Experimentally in the primary somatosensory cortex of the monkey, temporally invariant stimuli lead to spatially structured activity patterns. The purpose of this work is to study a recurrent cortical neural network model with lateral inhibition and examine what effect additive random noise has on the networks' ability to form stable spatially structured representations of the stimulus pattern. We show numerically that this network performs edge enhancement and forms statistically stationary, spatially structured responses when the lateral inhibition is of moderate strength. We then derive analytical conditions on the connectivity matrix that ensure stochasticly stable encoding of the stimulus spatial structure by the network. For stimuli whose strength falls in the near linear region of the sigmoid, we are able to give explicit conditions on the eigenvalues of the connection matrix. Finally, we prove that a network with a connection matrix, where the total excitation and inhibition impinging upon a neural unit are nearly balanced, will yield stable spatial attractor responses. Received: 16 October 1998 / Accepted in revised form: 25 November 1999  相似文献   

5.
Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200-250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.  相似文献   

6.
KNL1 is an evolutionarily conserved kinetochore-associated protein essential for accurate chromosome segregation in eukaryotic cells. This large scaffold protein, predicted to be almost entirely unstructured, is involved in diverse mitotic processes including kinetochore assembly, chromosome congression, and mitotic checkpoint signaling. How this kinetochore “hub” coordinates protein–protein interactions spatially and temporally during mitosis to orchestrate these processes is an area of active investigation. Here we summarize the current understanding of KNL1 and discuss possible mechanisms by which this protein actively contributes to multiple aspects of mitotic progression.  相似文献   

7.
The activity of a border ownership selective (BOS) neuron indicates where a foreground object is located relative to its (classical) receptive field (RF). A population of BOS neurons thus provides an important component of perceptual grouping, the organization of the visual scene into objects. In previous theoretical work, it has been suggested that this grouping mechanism is implemented by a population of dedicated grouping (“G”) cells that integrate the activity of the distributed feature cells representing an object and, by feedback, modulate the same cells, thus making them border ownership selective. The feedback modulation by G cells is thought to also provide the mechanism for object-based attention. A recent modeling study showed that modulatory common feedback, implemented by synapses with N-methyl-D-aspartate (NMDA)-type glutamate receptors, accounts for the experimentally observed synchrony in spike trains of BOS neurons and the shape of cross-correlations between them, including its dependence on the attentional state. However, that study was limited to pairs of BOS neurons with consistent border ownership preferences, defined as two neurons tuned to respond to the same visual object, in which attention decreases synchrony. But attention has also been shown to increase synchrony in neurons with inconsistent border ownership selectivity. Here we extend the computational model from the previous study to fully understand these effects of attention. We postulate the existence of a second type of G-cell that represents spatial attention by modulating the activity of all BOS cells in a spatially defined area. Simulations of this model show that a combination of spatial and object-based mechanisms fully accounts for the observed pattern of synchrony between BOS neurons. Our results suggest that modulatory feedback from G-cells may underlie both spatial and object-based attention.  相似文献   

8.
Traditional theories of texture segregation suggest that elementary visual features are processed in parallel by independent modules at early visual stages. Here we show that, for small feature contrasts and large values evoking perceptual popout, different forms of module interaction exist. While discrimination of highly salient features rests on independent feature specific pathways, information is summed across domains when barely noticeable ones are to be detected in homogeneous textures.  相似文献   

9.
The intercellular synchronization of spontaneous calcium (Ca(2+)) oscillations in individual smooth muscle cells is a prerequisite for vasomotion. A detailed mathematical model of Ca(2+) dynamics in rat mesenteric arteries shows that a number of synchronizing and desynchronizing pathways may be involved. In particular, Ca(2+)-dependent phospholipase C, the intercellular diffusion of inositol trisphosphate (IP(3), and to a lesser extent Ca(2+)), IP(3) receptors, diacylglycerol-activated nonselective cation channels, and Ca(2+)-activated chloride channels can contribute to synchronization, whereas large-conductance Ca(2+)-activated potassium channels have a desynchronizing effect. Depending on the contractile state and agonist concentrations, different pathways become predominant, and can be revealed by carefully inhibiting the oscillatory component of their total activity. The phase shift between the Ca(2+) and membrane potential oscillations can change, and thus electrical coupling through gap junctions can mediate either synchronization or desynchronization. The effect of the endothelium is highly variable because it can simultaneously enhance the intercellular coupling and affect multiple smooth muscle cell components. Here, we outline a system of increased complexity and propose potential synchronization mechanisms that need to be experimentally tested.  相似文献   

10.
In order to transmit a full genetic complement cells must ensure that all chromosomes are accurately split and distributed during anaphase. Chromosome XII in S. cerevisiae contains the site of nucleolar assembly, a 1-2Mb array of rDNA genes named RDN1. Cdc14p is a conserved phosphatase, essential for anaphase progression and mitotic exit, which is kept inactive at the nucleolus until mitosis. In early anaphase, the FEAR network (Cdc Fourteen Early Anaphase Release) promotes the transient and partial release of Cdc14p from the nucleolus. The putative role of Cdc14p released by the FEAR network is thought to be the stimulation of full Cdc14p release by activation of the GTPase-driven signaling cascade (the Mitotic Exit Network or MEN) that ensures mitotic exit. Here, we show that nucleolar segregation is spatially separated and temporally delayed from the rest of the genome. Nucleolar segregation occurs during mid-anaphase and coincides with the FEAR release of Cdc14p. Inactivation of FEAR delays nucleolar segregation until late anaphase, demonstrating that one function of the FEAR network is to promote segregation of repetitive nucleolar chromatin during mid-anaphase.  相似文献   

11.
视网膜发育与形成的“镶嵌模型”   总被引:3,自引:2,他引:3  
视网膜上不同种类的神经细胞为秩序分布.在胚胎发育过程中,如何能形成这种有秩序的空间分布对于眼睛和视网膜的发育至关重要.研究表明,眼睛和视网膜的发育与形成受多种基因的调控,不同的基因决定了视觉系统发育的不同结构.目前有报道认为,动物的眼睛在空间和时间上是由不同组织和不同分化的细胞镶嵌而形成的.  相似文献   

12.
Recently we introduced a new version of the perceptual retouch model incorporating two interactive binding operations—binding features for objects and binding the bound feature-objects with a large scale oscillatory system that acts as a mediary for the perceptual information to reach consciousness-level representation. The relative level of synchronized firing of the neurons representing the features of an object obtained after the second-stage synchronizing modulation is used as the equivalent of conscious perception of the corresponding object. Here, this model is used for simulating interaction of two successive featured objects as a function of stimulus onset asynchrony (SOA). Model output reproduces typical results of mutual masking—with shortest and longest SOAs first and second object correct perception rate is comparable while with intermediate SOAs second object dominates over the first one. Additionally, with shortest SOAs misbinding of features to form illusory objects is simulated by the model.  相似文献   

13.
14.
The spatial summation in receptive fields (RF) of single neurons in cat's extrastriate area 21a was investigated as a basic neurophysiological substrate for central integration processing of visual information. The results showed that the majority of investigated neurons changed their response patterns with gradual increase of applied stimulus size. In approximately 82% of cases the suppression of neuron discharges was observed when the length of the moving strip exceeded that of the RF. In some neurons the increased size of the moving stimulus leads to the changes in the RF substructure. Receptive fields of neurons recorded at the same microelectrode penetration depth showed a great variety of RF superpositions distributed in a spatially asymmetric manner. As a result, every single RF consists of multiple sub-regions within the RF, differing from each other by the number of superimposed RF-s (density factor). We suggest that such complex spatial organization of the RF provides the neurophysiological basis for central integration processing of the visual information.  相似文献   

15.
Theories attempting to explain species coexistence in plant communities have argued in favour of species' capacities to occupy a multidimensional niche with spatial, temporal and biotic axes. We used the concept of hydrological niche segregation to learn how ecological niches are structured both spatially and temporally and whether small scale humidity gradients between adjacent niches are the main factor explaining water partitioning among tree species in a highly water-limited semiarid forest ecosystem. By combining geophysical methods, isotopic ecology, plant ecophysiology and anatomical measurements, we show how coexisting pine and oak species share, use and temporally switch between diverse spatially distinct niches by employing a set of functionally coupled plant traits in response to changing environmental signals. We identified four geospatial niches that turned into nine, when considering the temporal dynamics of the wetting/drying cycles in the substrate and the particular plant species adaptations to garner, transfer, store and use water. Under water scarcity, pine and oak exhibited water use segregation from different niches, yet under maximum drought when oak trees crossed physiological thresholds, niche overlap occurred. The identification of niches and mechanistic understanding of when and how species use them will help unify theories of plant coexistence and competition.  相似文献   

16.
Summary To investigate scene segmentation in the visual system we present a model of two reciprocally connected visual areas comprising spiking neurons. The peripheral area P is modeled similar to the primary visual cortex, while the central area C is modeled as an associative memory representing stimulus objects according to Hebbian learning. Without feedback from area C, spikes corresponding to stimulus representations in P are synchronized only locally (slow state). Feedback from C can induce fast oscillations and an increase of synchronization ranges (fast state). Presenting a superposition of several stimulus objects, scene segmentation happens on a time scale of hundreds of milliseconds by alternating epochs of the slow and fast state, where neurons representing the same object are simultaneously in the fast state. We relate our simulation results to various phenomena observed in neurophysiological experiments, such as stimulus-dependent synchronization of fast oscillations, synchronization on different time scales, ongoing activity, and attention-dependent neural activity.  相似文献   

17.
Many theoretical studies support the notion that strong dispersal fosters spatial synchrony. Nonetheless, the effect of conditional vs. unconditional dispersal has remained a matter of controversy. We scrutinize recent findings on a desynchronizing effect of negative density-dependent dispersal based on spatially explicit simulation models. Keeping net emigration rates equivalent, we compared density-independent and density-dependent dispersal for different types of intraspecific density regulation, ranging from under-compensation to over-compensation. In general, density-independent dispersal possessed a slightly higher synchronizing potential but this effect was very small and sensitive compared to the influence of the type of local density regulation. Notably, consistent outcomes for the comparison of conditional dispersal strategies strongly relied on the control of equivalent emigration rates. We conclude that the strength of dispersal is more important for spatial synchrony than its density dependence. Most important is the mode of intraspecific density regulation.  相似文献   

18.
Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain.  相似文献   

19.
Many theoretical studies support the notion that strong dispersal fosters spatial synchrony. Nonetheless, the effect of conditional vs. unconditional dispersal has remained a matter of controversy. We scrutinize recent findings on a desynchronizing effect of negative density-dependent dispersal based on spatially explicit simulation models. Keeping net emigration rates equivalent, we compared density-independent and density-dependent dispersal for different types of intraspecific density regulation, ranging from under-compensation to over-compensation. In general, density-independent dispersal possessed a slightly higher synchronizing potential but this effect was very small and sensitive compared to the influence of the type of local density regulation. Notably, consistent outcomes for the comparison of conditional dispersal strategies strongly relied on the control of equivalent emigration rates. We conclude that the strength of dispersal is more important for spatial synchrony than its density dependence. Most important is the mode of intraspecific density regulation.  相似文献   

20.
Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号