首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbial flora of the water produced by two water filtration plants and their drinking water distribution system were evaluated: the Pont-Viau (PV) and the Repentigny (RE) water filtration plants. Untreated water entering the plants contained 3.6 (PV) and 16.8 most probable number of infectious units (mpniu)/L (RE) enteric viruses and total coliform bacteria counts were 300,000 (PV) and 500,000 cfu/L (RE). Treated water leaving the plant was essentially free of all the bacterial indicators measured (total, stressed, and fecal coliforms; Aeromonas hydrophila; Pseudomonas aeruginosa; Clostridium perfringens; enterococci) as well as of human enteric viruses. Heterotrophic plate counts at 20 and 35 degrees C were low in the freshly treated water leaving the plants, but bacterial regrowth was observed in both distribution systems at all sampling sites. Average counts for the heterotrophic plate count (20 degrees C) were between 10(6) and 10(7) cfu/L and counts were clearly increased with the distance from the plant. The most numerous bacterial genera encountered were Bacillus, Flavobacterium, and Pseudomonas (nonaeruginosa).  相似文献   

2.
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, approximately 40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study.  相似文献   

3.
To evaluate the inactivating power of residual chlorine in a distribution system, test microorganisms (Escherichia coli, Clostridium perfringens, bacteriophage phi-X 170, and poliovirus type 1) were added to drinking water samples obtained from two water treatment plants and their distribution system. Except for Escherichia coli, microorganisms remained relatively unaffected in water from the distribution systems tested. When sewage was added to the water samples, indigenous thermotolerant coliforms were inactivated only when water was obtained from sites very close to the treatment plant and containing a high residual chlorine concentration. Clostridium perfringens was barely inactivated, suggesting that the most resistant pathogens such as Giardia lamblia, Cryptosporidium parvum, and human enteric viruses would not be inactivated. Our results suggest that the maintenance of a free residual concentration in a distribution system does not provide a significant inactivation of pathogens, could even mask events of contamination of the distribution, and thus would provide only a false sense of safety with little active protection of public health. Recent epidemiological studies that have suggested a significant waterborne level of endemic gastrointestinal illness could then be explained by undetected intrusions in the distribution system, intrusions resulting in the infection of a small number of individuals without eliciting an outbreak situation.  相似文献   

4.
The aims of the present study were to assess the microbial quality of Mya arenaria clams from the north shore of the St. Lawrence River estuary and to validate various microbial indicator microorganisms of bivalve mollusks contamination. Clams were collected from nine sites, including four harvesting sites closed by virtue of the Canadian Shellfish Sanitation Program (CSSP). Six contamination indicators (fecal coliforms, somatic coliphages, F-specific coliphages, fecal streptococci, Clostridium perfringens, and Escherichia coli) and four pathogens (Campylobacter sp., Cryptosporidium parvum, Giardia sp., and Salmonella sp.) were identified in the clams. Indicators sensibility, specificity and predictive values with respect to the presence of pathogens were calculated. Pathogenic microorganisms detection frequency in clams was important (92%). Globally, pathogens tend to be less frequently detected in opened harvesting sites (p = 0.086). Although the assessed indicators were not perfect, when F-specific coliphages are associated with E. coli or fecal coliforms, a good sensibility (62%-64%) and good positive predictive value (88%) with respect to the investigated pathogens are obtained.  相似文献   

5.
Reductions in annual rainfall in some regions and increased human consumption have caused a shortage of water resources at the global level. The recycling of treated wastewaters has been suggested for certain domestic, industrial, and agricultural activities. The importance of microbiological and parasitological criteria for recycled water has been repeatedly emphasized. Among water-borne pathogens, protozoa of the genera Giardia and Cryptosporidium are known to be highly resistant to water treatment procedures and to cause outbreaks through contaminated raw or treated water. We conducted an investigation in four wastewater treatment plants in Italy by sampling wastewater at each stage of the treatment process over the course of 1 year. The presence of the parasites was assessed by immunofluorescence with monoclonal antibodies. While Cryptosporidium oocysts were rarely observed, Giardia cysts were detected in all samples throughout the year, with peaks observed in autumn and winter. The overall removal efficiency of cysts in the treatment plants ranged from 87.0 to 98.4%. The removal efficiency in the number of cysts was significantly higher when the secondary treatment consisted of active oxidation with O(2) and sedimentation instead of activated sludge and sedimentation (94.5% versus 72.1 to 88.0%; P = 0.05, analysis of variance). To characterize the cysts at the molecular level, the beta-giardin gene was PCR amplified, and the products were sequenced or analyzed by restriction. Cysts were typed as assemblage A or B, both of which are human pathogens, stressing the potential risk associated with the reuse of wastewater.  相似文献   

6.
Concern has greatly increased about the potential for contamination of water, food, and air by pathogens present in manure. We evaluated pathogen reduction in liquid swine manure in a multi-stage treatment system where first the solids and liquid are separated with polymer, followed by biological nitrogen (N) removal using nitrification and denitrification, and then phosphorus (P) extraction through lime precipitation. Each step of the treatment system was analyzed for Salmonella and microbial indicators of fecal contamination (total coliforms, fecal coliforms, and enterococci). Before treatment, mean concentrations of Salmonella, total coliforms, fecal coliforms, and enterococci were 3.89, 6.79, 6.23 and 5.73 log(10) colony forming units (cfu)/ml, respectively. The flushed manure contained 10,590 mg/l TSS, 8270 mg/l COD, 688 mg/l TKN and 480 mg/l TP, which were reduced >98% by the treatment system. Results showed a consistent trend in reduction of pathogens and microbial indicators as a result of each step in the treatment system. Solid-liquid separation decreased their concentrations by 0.5-1 log(10). Additional biological N removal treatment with alternating anoxic and oxic conditions achieved a higher reduction with average removals of 2.4 log(10) for Salmonella and 4.1-4.5 log(10) for indicator microbes. Subsequent P treatment decreased concentration of Salmonella and pathogen indicators to undetectable level (<0.3 log(10) cfu/ml) due to elevated process pH (10.3). Our results indicate that nitrification/denitrification treatment after solids separation is very effective in reducing pathogens in liquid swine manure and that the phosphorus removal step via alkaline calcium precipitation produces a sanitized effluent which may be important for biosecurity reasons.  相似文献   

7.
Samples of sewage influent from 40 sewage treatment works (STW) throughout Norway were examined for Cryptosporidium oocysts and Giardia duodenalis cysts. Both parasites were detected frequently (80% of STW were Cryptosporidium positive; 93% of STW were Giardia positive) and at maximum concentrations of > 20,000 parasites/liter. The data suggest giardiasis is more widespread, and/or occurs with greater infection intensity, than cryptosporidiosis in Norway. STW serving higher person equivalents were more likely to be positive and had higher parasite concentrations. Parasite concentrations were used to estimate the proportion of contributing populations that could be clinically infected. For Cryptosporidium, the highest estimates were up to 5 per 100,000 individuals for two populations in eastern Norway. For Giardia, the highest estimate was 40 infected per 100,000 persons (approximately five times the usual national annual average) contributing to an STW in western Norway. As this population experienced a large waterborne giardiasis outbreak 6 months after sampling, it can be speculated that regular challenge with Giardia may occur here. Most Giardia isolates in sewage influent were assemblage A, although some assemblage B isolates were detected. There was substantial heterogeneity, but most samples contained isolates similar to genotype A3. Removal efficiencies at two STW with secondary treatment processes were estimated to be approximately 50% for Cryptosporidium and > 80% for Giardia. An STW with minimal treatment had negligible removal of both parasites. Many STW in Norway have minimal treatment and discharge effluent into rivers and lakes, thus, risk of contamination of water courses by Cryptosporidium and Giardia is considerable.  相似文献   

8.
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.  相似文献   

9.
Giardia and Cryptosporidium spp. in filtered drinking water supplies.   总被引:10,自引:7,他引:3       下载免费PDF全文
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.  相似文献   

10.
Pathogens and fecal indicator bacteria occurrence and removal were studied for a period of 6 months at the Montreal Urban Community wastewater treatment facility. With a capacity of about 7.6 million cubic metres per day (two billion U.S. gallons per day), it is the largest primary physico-chemical treatment plant in America. The plant discharges a nondisinfected effluent containing about 20 mg/L of suspended matter and 0.5 mg/L of total phosphorus on the basis of average annual concentrations. BDO5 (annual mean) is 75 mg/L before treatment and 32 mg/L after treatment. Samples were collected for a period of 6 months, and they demonstrated that the plant was not efficient at removing indicator bacteria and the pathogens tested. Fecal coliforms were the most numerous of the indicator bacteria and their removal averaged 25%. Fecal streptococci removal was 29%, while Escherichia coli removal was 12%. In untreated sewage, fecal coliforms, E. coli, and human enteric viruses were more numerous in summer and early autumn. Fecal streptococci counts remained relatively similar throughout the period. Clostridium perfringens removal averaged 51%. Giardia cysts levels were not markedly different throughout the study period, and 76% of the cysts were removed by treatment. Cryptosporidium oocyst counts were erratic, probably due to the methods, and removal was 27%. Human enteric viruses were detected in all samples of raw and treated wastewater with no removal observed (0%). Overall, the plant did not perform well for the removal of fecal indicator bacteria, human enteric viruses, or parasite cysts. Supplementary treatment and disinfection were recommended to protect public health. Various alternatives are being evaluated.  相似文献   

11.
The objective of this study was to evaluate the efficiency of a low temperature anaerobic treatment to reduce viable populations of indicator microorganisms (total coliforms, Escherichia coli) and the presence of selected pathogens (Salmonella, Yersinia enterocolitica, Cryptosporidium and Giardia) in swine slurries from different sources. Experiments were carried out in 40 l Sequencing Batch Reactors (SBRs). Experimental results indicated that anaerobic digestion of swine manure slurry at 20 degrees C for 20 days in an intermittently fed SBR: (1) reduced indigenous populations of total coliforms by 97.94-100%; (2) reduced indigenous populations of E. coli by 99.67-100%; (3) resulted in undetectable levels of indigenous strains of Salmonella, Cryptosporidium, and Giardia. It can be considered as a promising method for reducing indigenous indicator and pathogenic microorganisms populations in liquid swine manure slurries.  相似文献   

12.
13.
Aims: To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Methods and Results: Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Conclusions: Hydroponics wastewater treatment removed micro-organisms satisfactorily. Significance and Impact of the Study: Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.  相似文献   

14.
AIMS: To determine the ability of duckweed ponds used to treat domestic waste-water to remove Giardia and Cryptosporidium. METHODS AND RESULTS: The influent and effluent of a pond covered with duckweed with a 6 day retention time was tested for Giardia cysts, Cryptosporidium oocysts, faecal coliforms and coliphage. Giardia cysts and Cryptosporidium oocysts were reduced by 98 and 89%, respectively, total coliforms by 61%, faecal coliforms by 62% and coliphage by 40%. There was a significant correlation between the removal of Giardia cysts and Cryptospordium oocysts by the pond (P < 0.001). Influent turbidity and parasite removal were also significantly correlated (Cryptosporidium and turbidity, P=0.05; Giardia and turbidity, P=0.01). CONCLUSIONS: The larger organisms (parasites) probably settled to the bottom of the pond, while removal of smaller bacteria and coliphages in the pond was not as effective. SIGNIFICANCE AND IMPACT OF THE STUDY: Duckweed ponds may play an important role in wetland systems for reduction of Giardia and Cryptosporidium.  相似文献   

15.
A total of 139 surface water samples from seven lakes and 15 rivers in southwestern Finland were analyzed during five consecutive seasons from autumn 2000 to autumn 2001 for the presence of various enteropathogens (Campylobacter spp., Giardia spp., Cryptosporidium spp., and noroviruses) and fecal indicators (thermotolerant coliforms, Escherichia coli, Clostridium perfringens, and F-RNA bacteriophages) and for physicochemical parameters (turbidity and temperature); this was the first such systematic study. Altogether, 41.0% (57 of 139) of the samples were positive for at least one of the pathogens; 17.3% were positive for Campylobacter spp. (45.8% of the positive samples contained Campylobacter jejuni, 25.0% contained Campylobacter lari, 4.2% contained Campylobacter coli, and 25.0% contained Campylobacter isolates that were not identified), 13.7% were positive for Giardia spp., 10.1% were positive for Cryptosporidium spp., and 9.4% were positive for noroviruses (23.0% of the positive samples contained genogroup I and 77.0% contained genogroup II). The samples were positive for enteropathogens significantly (P < 0.05) less frequently during the winter season than during the other sampling seasons. No significant differences in the prevalence of enteropathogens were found when rivers and lakes were compared. The presence of thermotolerant coliforms, E. coli, and C. perfringens had significant bivariate nonparametric Spearman's rank order correlation coefficients (P < 0.001) with samples that were positive for one or more of the pathogens analyzed. The absence of these indicators in a logistic regression model was found to have significant predictive value (odds ratios, 1.15 x 10(8), 7.57, and 2.74, respectively; P < 0.05) for a sample that was negative for the pathogens analyzed. There were no significant correlations between counts or count levels for thermotolerant coliforms or E. coli or the presence of F-RNA phages and pathogens in the samples analyzed.  相似文献   

16.
To find the most suitable indicator of viral and parasitic contamination of drinking water, large-volume samples were collected and analyzed for the presence of pathogens (cultivable human enteric viruses, Giardia lamblia cysts, and Cryptosporidium oocysts) and potential indicators (somatic and male-specific coliphages, Clostridium perfringens). The samples were obtained from three water treatment plants by using conventional or better treatments (ozonation, biological filtration). All samples of river water contained the microorganisms sought, and only C. perfringens counts were correlated with human enteric viruses, cysts, or oocysts. For settled and filtered water samples, all indicators were statistically correlated with human enteric viruses but not with cysts or oocysts. By using multiple regression, the somatic coliphage counts were the only explanatory variable for the human enteric virus counts in settled water, while in filtered water samples it was C. perfringens counts. Finished water samples of 1,000 liters each were free of all microorganisms, except for a single sample that contained low levels of cysts and oocysts of undetermined viability. Three of nine finished water samples of 20,000 liters each revealed residual levels of somatic coliphages at 0.03, 0.10, and 0.26 per 100 liters. Measured virus removal was more than 4 to 5 log10, and cyst removal was more than 4 log10. Coliphage and C. perfringens counts suggested that the total removal and inactivation was more than 7 log10 viable microorganisms. C. perfringens counts appear to be the most suitable indicator for the inactivation and removal of viruses in drinking water treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The extent of reduction in selected microorganisms was tested during both aerobic wastewater treatment and anaerobic digestion of sludge at the wastewater treatment plant in Ottawa to compare the removal of two encysted pathogenic protozoa with that of microbial indicators. Samples collected included the raw wastewater, the primary effluent, the treated wastewater, the mixed sludge, the decanted liquor, and the cake. All of the raw sewage samples were positive for Cryptosporidium oocysts and Giardia cysts, as well as for the other microorganisms tested. During aerobic wastewater treatment (excluding the anaerobic sludge digestion), Cryptosporidium and Giardia were reduced by 2.96 log10 and 1.40 log10, respectively. Clostridium perfringens spores, Clostridium perfringens total counts, somatic coliphages, and heterotrophic bacteria were reduced by approximately 0.89 log10, 0.96 log10, 1.58 log10, and 2.02 log10, respectively. All of the other microorganisms were reduced by at least 3.53 log10. Sludge samples from the plant were found to contain variable densities of microorganisms. Variability in microbial concentrations was sometimes great between samples, stressing the importance of collecting a large number of samples over a long period of time. In all cases, the bacterial concentrations in the cake (dewatered biosolids) samples were high even if reductions in numbers were observed with some bacteria. During anaerobic sludge digestion, no statistically significant reduction was observed for Clostridium perfringens, Enterococcus sp., Cryptosporidium oocysts, and Giardia cysts. A 1-2 log10 reduction was observed with fecal coliforms and heterotrophic bacteria. However, the method utilized to detect the protozoan parasites does not differentiate between viable and nonviable organisms. On the other hand, total coliforms and somatic coliphages were reduced by 0.35 log10 and 0.09 log10, respectively. These results demonstrate the relative persistence of the protozoa in sewage sludge during wastewater treatment.  相似文献   

18.
19.
AIMS: To compare the suitability of various bacterial and viral indicators to assess the removal of faecal micro-organisms by primary and secondary wastewater treatment processes. METHODS AND RESULTS: The numbers of several bacterial indicators [faecal coliforms (FC), enterococci (ENT) and sulphite-reducing clostridia (SRC)] and bacteriophages (somatic coliphages, F-specific RNA phages and bacteriophages infecting Bacteroides fragilis strain RYC2056) were determined in incoming raw sewage and effluents from various primary and secondary wastewater treatment processes in several geographical areas. Reductions in the numbers of indicators were calculated as log10 reductions. Processes based on removal and mild disinfection, showed no significant differences in the elimination of any of the indicators tested or between geographical areas. In contrast, treatment processes that include strong microbial inactivation, such as lime-aided flocculation and lagooning, showed significant differences between the log10 reductions of the various micro-organisms studied, FC showing the highest reduction and spores of SRC and phages infecting B. fragilis the lowest. CONCLUSIONS: The microbial elimination performance of treatment processes based principally on removal and mild disinfection can be evaluated with a single indicator. In contrast, processes with additional disinfecting capabilities require more than one indicator for accurate evaluation of the treatment; bacteriophages are good candidates for use as second indicators. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophages provide additional information for the evaluation of microbial elimination in some treatment plants. The easy, fast and cheap methods available for phage determination are feasible both in industrialized and developing countries.  相似文献   

20.
A nested-PCR method was used to detect the occurrence of human adenovirus in coastal waters of Southern California. Twenty- to forty-liter water samples were collected from 12 beach locations from Malibu to the border of Mexico between February and March 1999. All sampling sites were located at mouths of major rivers and creeks. Two ultrafiltration concentration methods, tangential flow filtration (TFF) and vortex flow filtration (VFF), were compared using six environmental samples. Human adenoviruses were detected in 4 of the 12 samples tested after nucleic acid extraction of VFF concentrates. The most probable number of adenoviral genomes ranged from 880 to 7,500 per liter of water. Coliphages were detected at all sites, with the concentration varying from 5.3 to 3332 PFU/liter of water. F-specific coliphages were found at 5 of the 12 sites, with the concentration ranging from 5.5 to 300 PFU/liter. The presence of human adenovirus was not significantly correlated with the concentration of coliphage (r = 0.32) but was significantly correlated (r = 0.99) with F-specific coliphage. The bacterial indicators (total coliforms, fecal coliforms, and enterococci) were found to exceed California recreational water quality daily limits at 5 of the 12 sites. However, this excess of bacterial indicators did not correlate with the presence of human adenoviruses in coastal waters. The results of this study call for both a reevaluation of our current recreational water quality standards to reflect the viral quality of recreational waters and monitoring of recreational waters for human viruses on a regular basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号