首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene for dentin sialophosphoprotein produces a single protein that is post-translationally modified to generate two distinct extracellular proteins: dentin sialoprotein and dentin phosphoprotein. In teeth, dentin sialophosphoprotein is expressed primarily by odontoblast cells, but is also transiently expressed by presecretory ameloblasts. Because of this expression profile it appears that dentin sialophosphoprotein contributes to the early events of amelogenesis, and in particular to those events that result in the formation of the dentino-enamel junction and the adjacent "aprismatic" enamel. Using a transgenic animal approach we have extended dentin sialoprotein or dentin phosphoprotein expression throughout the developmental stages of amelogenesis. Overexpression of dentin sialoprotein results in an increased rate of enamel mineralization, however, the enamel morphology is not significantly altered. In wild-type animals, the inclusion of dentin sialoprotein in the forming aprismatic enamel may account for its increased hardness properties, when compared with bulk enamel. In contrast, the overexpression of dentin phosphoprotein creates "pitted" and "chalky" enamel of non-uniform thickness that is more prone to wear. Disruptions to the prismatic enamel structure are also a characteristic of the dentin phosphoprotein overexpressing animals. These data support the previous suggestion that dentin sialoprotein and dentin phosphoprotein have distinct functions related to tooth formation, and that the dentino-enamel junction should be viewed as a unique transition zone between enamel and the underlying dentin. These results support the notion that the dentin proteins expressed by presecretory ameloblasts contribute to the unique properties of the dentino-enamel junction.  相似文献   

2.
Laminin alpha2 is subunit of laminin-2 (alpha2beta1gamma1), which is a major component of the muscle basement membrane. Although the laminin alpha2 chain is expressed in the early stage of dental mesenchyme development and localized in the tooth germ basement membrane, its expression pattern in the late stage of tooth germ development and molecular roles are not clearly understood. We analyzed the role of laminin alpha2 in tooth development by using targeted mice with a disrupted lama2 gene. Laminin alpha2 is expressed in dental mesenchymal cells, especially in odontoblasts and during the maturation stage of ameloblasts, but not in the pre-secretory or secretory stages of ameloblasts. Lama2 mutant mice have thin dentin and a widely opened dentinal tube, as compared with wild-type and heterozygote mice, which is similar to the phenotype of dentinogenesis imperfecta. During dentin formation, the expression of dentin sialoprotein, a marker of odontoblast differentiation, was found to be decreased in odontoblasts from mutant mice. Furthermore, in primary cultures of dental mesenchymal cells, dentin matrix protein, and dentin sialophosphoprotein, mRNA expression was increased in laminin-2 coated dishes but not in those coated with other matrices, fibronectin, or type I collagen. Our results suggest that laminin alpha2 is essential for odontoblast differentiation and regulates the expression of dentin matrix proteins.  相似文献   

3.
Rat dentin contains a major sialic acid-rich glycoprotein, DSP, with an overall composition similar to that of bone sialoproteins but whose biological role in dentinogenesis is unknown. Using polyclonal affinity-purified antibodies to rat DSP and four immunohistochemical methods of detection, we studied the cell and tissue localization of DSP and the time course of its appearance during odontoblast differentiation. DSP first appeared within young odontoblasts concomitant with early secretion of pre-dentin matrix and before the onset of mineralization but was absent in pre-odontoblasts. DSP immunostaining also localized within secretory odontoblasts and was intense in odontoblastic processes. Early pre-dentin stained positive for DSP, in contrast to more mature pre-dentin, where immunoreactivity was less intense and more restricted to odontoblastic processes. In the zone of mineralized dentin matrix, a moderate and uniform staining pattern was evident. Intense immunostaining was also seen within the cells and matrix of dental pulp during dentinogenesis. Other cells and tissues within the tooth organ and those surrounding it were non-reactive. These findings suggest that DSP is developmentally expressed in cells of the odontoblastic lineage and may be a biochemical marker of odontoblastic activity.  相似文献   

4.
5.
6.
7.
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are acidic proteins found in the extracellular matrices of bones and teeth. Recent data from gene knockouts, along with those of gene mutations, indicate that these two phosphoproteins are critical for bone and tooth development and/or maintenance. However, the precise functions of the two proteins have not been elucidated. In order to gain insights into their functions in tooth formation, we performed systematic, comparative investigations on the immunolocalization of DMP1 and dentin sialoprotein (DSP, a cleaved fragment of DSPP), using the rat first molar at different developmental stages as a model. Immunohistochemistry (IHC) was performed with specific, monoclonal antibodies against the COOH-terminal fragments of DMP1 and against DSP. In 1-day- and 1-week-old rats, weak immunoreactions for DMP1 were observed in dentinal tubules while stronger reactions for DSP were seen in the tubules and predentin. In rats older than 2 weeks, immunoreactions for DMP1 were found in dentinal tubules, predentin and odontoblasts. In 5-week- and 8-week-old rats, strong immunoreactions for DMP1 were widely distributed in odontoblasts and predentin. The distribution pattern of DSP was strikingly similar to that of DMP1 after 2 weeks and the localization of each was distinctly different from that of bone sialoprotein (BSP). The unique colocalization of DMP1 and DSPP in tooth development suggests that the two proteins play complementary and/or synergistic roles in formation and maintenance of healthy teeth.  相似文献   

8.
9.
10.
Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the expression and role of the V-type ATPase proton pump in the enamel organ during amelogenesis.  相似文献   

11.
The localization of calcium in the enamel organ of rapidly-frozen, freeze-substituted rat incisors in early-stage amelogenesis was examined by a histochemical calcium-staining method. In secretory ameloblasts, glyoxal bis(2-hydroxyanil) (GBHA) staining revealed intense red reactions in mitochondria and tubulovesicular structures located throughout the cytoplasm, while no reaction was seen in the nucleus and cytosol, nor along the plasma membranes of the respective cells. No significant GBHA reaction was observed in the intercellular compartment and other cells of the enamel organ. Some granular reactions were localized in the cells of the adjacent connective tissue. Control tests confirmed the specificity of GBHA reactions for calcium. Thus, the present observations provide histochemical evidence indicating an exclusive localization of calcium in mitochondria and tubulovesicular structures of the secretory ameloblast, and support their contributions to the translocation of calcium from the proximal to the distal pole of the cytoplasm.  相似文献   

12.
Experimental periodontal regeneration studies have revealed the weak binding of repair cementum to the root surface, whereas attachment of cementum to dentin preconditioned by odontoclasts appears to be superior. The aim of this study has been, therefore, to analyze the structural and partial biochemical nature of the interface that develops between resorbed dentin and repair cementum by using human deciduous teeth as a model. Aldehyde-fixed and decalcified tooth samples were embedded in acrylic or epoxy resins and sectioned for light and transmission electron microscopy. Antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two noncollagenous proteins accumulating at hard tissue interfaces in bone and teeth, were used for protein A-gold immunocytochemistry. Light microscopy revealed a gradually increasing staining intensity of the external dentin matrix starting after the withdrawal of the odontoclast. Labeling for both BSP and OPN was first detected among the exposed collagen fibrils and in the intratubular dentin matrix when odontoclasts had withdrawn but mesenchymal cells were present. Subsequently, collagen fibrils of the repair cementum were deposited concomitantly with the appearance of labeling for BSP and OPN over the intratubular, intertubular, and peritubular dentin matrix. Labeled mineralization foci indicated the advancing mineralization front, and the collagenous repair matrix became integrated in an electron-dense organic material that showed labeling for BSP and OPN. Thus, no distinct planar interfacial matrix layer lies between the resorbed dentin and the repair cementum. The results suggest that odontoclasts precondition the dentin matrix such that the repair cementum becomes firmly attached.This study was supported by the Clinical Research Foundation (CRF) for the Promotion of Oral Health, University of Berne, Berne, Switzerland.  相似文献   

13.
The 200-300 microm soft zone of dentin, found beneath enamel in crowns of human teeth, is thought to fulfill important roles in tooth function, but little is known about its structure-mechanical relations. Scanning electron microscopy images of fracture surfaces showed that near the dentino-enamel junction (DEJ), a porous reticulate matrix of intertubular-dentin contains tubules with no peritubular lining. Peritubular-dentin however is found at some distance from the DEJ, and it gradually thickens with increasing depth into the bulk dentin. Concurrently, tighter packing of the collagen fibers is observed with a gradual increase in mineral deposits on and between the fibers. This structurally graded zone is known to be softer when tested for micro-hardness. It undergoes greater strain compared to bulk dentin, when measured using Moiré interferometry. We investigated the deformation and stiffness of this zone by means of non-contact laser-speckle interferometry (ESPI), and nanometer-scale deformations were tracked during compression-testing performed in water. We report a significantly reduced stiffness of this zone compared to bulk dentin, with mid-buccal regions of teeth averaging 3.5 GPa compared with 9.7 GPa in mid-lingual regions. Our results support and expand upon the hypothesis that the durability of the whole tooth relies upon a bucco-lingual asymmetric matching of stiffness by means of an interphase: a cushioning soft layer between enamel and bulk dentin.  相似文献   

14.
The aim of this study is to determine the effects of the combination of recombinant human BMP-2 (rh-BMP-2) and dentin sialoprotein (rh-DSP) on growth and differentiation in human cementoblasts and determine the underlying signal transduction mechanism. Compared to treatment of cementoblasts with either rh-BMP-2 or rh-DSP alone, the combination of rh-BMP-2 and rh-DSP synergistically increased cell growth, ALP activity, nodule formation and expression of differentiation markers. The differentiation-promoting effect was also observed in periodontal ligament cells and an osteoblastic cell line. Likewise, combination of rh-DSP and rh-BMP-2 increased BMP-2 mRNA expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. The expression levels of α2β1 integrin and RhoA, as well as the phosphorylation status of FAK and Akt, were increased by the combination of rh-BMP-2 and rh-DSP in a time-dependent manner. In addition, rh-BMP-2 and rh-DSP enhanced expression of Wnt ligands, β-catenin activation and GSK-3β phosphorylation, all of which were inhibited by the Wnt receptor antagonist DKK1. Furthermore, treatment with rh-DSP plus rh-BMP-2 resulted in phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 and also induced the nuclear translocation of the NF-κB p65 subunit, which was blocked by noggin. This study demonstrates for the first time that rh-DSP and rh-BMP-2 act synergistically, enhancing each other’s ability to stimulate cementoblastic cell growth and differentiation in vitro via autocrine BMP, integrin, Wnt/β-catenin, MAP kinase and NF-κB pathways. These results support the therapeutic potential of a combination strategy for aiding periodontal regeneration.  相似文献   

15.
16.
Semaphorin 7A (SEMA 7A) is a membrane-anchored member of the semaphorin family of guidance proteins, previously identified in the immune system. Expressed in central and peripheral nervous system during embryonic and post-natal stages, it can mediate neuronal functions by promoting axonal growth. We show here that SEMA 7A is expressed in human odontoblasts in vivo and in vitro and that its expression is correlated with the establishment of dentin-pulp complex terminal innervation . Co-cultures of trigeminal ganglion (TG) with COS cells overexpressing SEMA 7A demonstrate that SEMA 7A can promote the growth of trigeminal nerve fibers. Finally, by RT-PCR and immunochemistry, we show that beta1-integrin, a SEMA 7A putative receptor, is expressed in pulpal nerve fibers but we failed to detect a co-localization between nerves and odontoblasts through these molecules. On the basis of these data, we suggest that SEMA 7A might be a molecule involved in the terminal innervation of the dentin-pulp complex.  相似文献   

17.
Dentin sialoprotein (DSP) is a major non-collagenous protein in dentin. Mutation studies in human, along with gene knockout and transgenic experiments in mice, have confirmed the critical role of DSP for dentin formation. Our previous study reported that DSP is processed into fragments in mouse odontoblast-like cells. In order to gain insights into the function of DSP fragments, we further evaluated the expression pattern of DSP in the mouse odontoblast-like cells using immunohistochemistry and western blot assay with antibodies against the NH(2)-terminal and COOH-terminal regions of DSP. Then, the distribution profiles of the DSP NH(2)-terminal and COOH-terminal fragments and osteopontin (OPN) were investigated in mouse teeth at different ages by immunohistochemistry. In the odontoblast-like cells, multiple low molecular weight DSP fragments were detected, suggesting that part of the DSP protein was processed in the odontoblast-like cells. In mouse first lower molars, immunoreactions for anti-DSP-NH(2) antibody were intense in the predentin matrix but weak in mineralized dentin; in contrast, for anti-DSP-COOH antibody, strong immunoreactions were found in mineralized dentin, in particular dentinal tubules but weak in predentin. Therefore, DSP NH(2)-terminal and COOH-terminal fragments from odontoblasts were secreted to different parts of teeth, suggesting that they may play distinct roles in dentinogenesis. Meanwhile, both DSP antibodies showed weak staining in reactionary dentin (RD), whereas osteopontin (OPN) was clearly positive in RD. Therefore, DSP may be less crucial for RD formation than OPN.  相似文献   

18.
Summary We examined rat cells undergoing amelogenesis for the presence of three types of keratin proteins using a polyclonal antibody to keratin (against total keratins (TK) with molecular masses ranging from 41 to 65 kilodaltons (kd) and monoclonal antibodies keratins to KL1 and PKK1 (reactive with keratins with molecular masses of 55–57 and 41–56 kd, respectively). In normal oral epithelia from young rats, the TK, KL1, and PKK1 antibodies bound to all of the epithelial strata. The epithelial cap on the top of incisors and the dental lamina of molar teeth exhibited strong TK staining, moderate staining KL1, and little or no PKK1 staining. In developing molar enamel organs, both the outer and inner enamel epithelia, the stratum intermedium, and stellate reticulum cells were all positively stained by the TK immunoreagent. In developing incisors, TK only bound strongly to stratum-intermedium cells, and no KL1 and PKK1 staining antibodies was observed in ameloblasts or the stratum intermedium.  相似文献   

19.
We examined rat cells undergoing amelogenesis for the presence of three types of keratin proteins using a polyclonal antibody to keratin (against total keratins (TK) with molecular masses ranging from 41 to 65 kilodaltons (kd) and monoclonal antibodies keratins to KL1 and PKK1 (reactive with keratins with molecular masses of 55-57 and 41-56 kd, respectively). In normal oral epithelia from young rats, the TK, KL1, and PKK1 antibodies bound to all of the epithelial strata. The epithelial cap on the top of incisors and the dental lamina of molar teeth exhibited strong TK staining, moderate staining KL1, and little or no PKK1 staining. In developing molar enamel organs, both the outer and inner enamel epithelia, the stratum intermedium, and stellate reticulum cells were all positively stained by the TK immunoreagent. In developing incisors, TK only bound strongly to stratum-intermedium cells, and no KL1 and PKK1 staining antibodies was observed in ameloblasts or the stratum intermedium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号