首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To define the molecular structure of bovine lens epithelium and its anterior lens capsule, we investigated the composition of lens capsule basement membrane proteins. Immunofluorescence and immunogold techniques were used to demonstrate the presence of type I and type III collagen in the lens capsule and in primary explant epithelial cultures grown on protein-binding membranes. Immunofluorescence staining with specific antibodies indicated that type I and type III collagen were constituents of lens basement membrane. We observed that deposition of type III collagen was more than type I collagen. The synthesis of fibrillar collagen by lens epithelium and its deposition in the lens capsule was established by localization of fibrillar collagen by transmission immunoelectron microscopy. These results demonstrate for the first time that normal lens epithelium synthesize fibrillar collagen which is an intrinsic component of the anterior lens capsule basement membrane.  相似文献   

2.
To determine whether a preformed basement membrane contributes to the maintenance of morphology and function of type II pneumocytes, we cultured isolated adult rat type II pneumocytes on the basement membrane and stromal surfaces of an acellular human amnionic membrane and on plastic. The presence of lamellar bodies on transmission electron microscopy and epithelial morphology in culture and a characteristic phospholipid profile after incubation with 3H-acetate identified the cells as type II. When type II cells were cultured on a preexisting basement membrane, they formed a well-organized monolayer with polarity, centrally located surface microvilli, and more basally located nuclei. Individual cells maintained a cuboidal morphology for 8–10 days. Intracellularly, there were numerous mitochondria, endoplasmic reticulum (ER), and lamellar bodies. The cells secreted a new basal lamina of their own. When cultured on the stromal side of the amnion, the cells became flattened within 48–60 hours, formed small lamellar bodies, and had scanty surface microvilli; they formed clumps and appeared less ordered. These cells did not secrete a visible basement membrane, and the majority detached from the stromal surface after 7–8 days in culture. In addition, culture on the basement membrane aspect of the amnion prevented the rapid decline in the percentage of 3H-acetate label incorporated in phosphatidylcholine after 72 hours of culture. We conclude that a preformed basement membrane influences the function and morphology of type II pneumocytes, organizes them into a monolayer in culture, and influences deposition of a visible basal lamina. Thus, the acellular human amnion provides an excellent model for the systematic study of basement membrane influence on the biology and pathology of these cells.  相似文献   

3.
Ultrastructure of human blastocyst-endometrial interactions in vitro   总被引:4,自引:0,他引:4  
The interactions of seven human blastocysts with cultured endometrial cells were investigated by light microscopy and transmission electron microscopy. Trophoblastic-endometrial contact was observed at the lateral border of endometrial epithelial cells where trophoblast and endometrial epithelial cells shared apical junctional complexes and desmosomes. The first sign of penetration was invasion of a trophoblastic cytoplasmic protrusion between endometrial epithelial cells. In broad contact areas, lateral displacement of endometrial epithelial cells and formation of a peripheral pseudostratified epithelium were observed. When trophoblastic cells were interposed fully among endometrial epithelial cells, they formed a penetration cone and appeared to dislodge endometrial epithelial cells from the stromal compartment. A single penetration cone only was found in each specimen. Endometrial or trophoblastic degeneration was not observed. Formation of multinucleate (>/= three nuclei per cell) trophoblast cells was not observed, but many cells displayed areas with abrupt disappearance of well-defined plasma membranes, which is indicative of syncytium formation. In this study, adhesion and penetration occurred at the same time. The human blastocysts penetrated the endometrial surface epithelium by intrusive penetration. Epithelial penetration was achieved primarily by cellular syncytiotrophoblast-like cells and the first indications of syncytium formation were observed simultaneously with penetration of the epithelium.  相似文献   

4.
Summary Interactions between bovine trophoblastic cell vesicles and bovine endometrial epithelial cells were investigated by light and electron microscopy and lectin histochemistry in a cell culture model of early blastocyst attachment. Primary lines of bovine endometrial epithelial cells were polarized by subculturing on substrata and maintaining cultures at the air-medium interface. Trophoblastic cell vesicles were obtained from elongated Day 14 blastocysts. In co-cultures, trophoblastic cell vesicles adhered to endometrial epithelial cells through microvillus interdigitation and formation of primitive membrane junctional complexes. After 3 d in co-culture, a multilayered cellular plaque formed at the trophoblastic cell-endometrial epithelial cell interface. The type of cells contributing to this local proliferative response could not be identified specifically as trophoblastic or endometrial cells, and areas of membrane fusion between cells were noted. Ultrastructural features of vesicle adhesion in cultures were similar to features of conceptus attachment in vivo. Lectins bound to apical membranes of trophoblastic cells and endometrial epithelial cells in all locations except contact sites between vesicles and endometrial cells. These findings suggest that local cellular proliferation and membrane fusion between trophoblastic and endometrial epithelial cells may be early events in conceptus implantation in the cow and these events can be reproduced in culture. This work was supported by a grant from U.S. Department of Agriculture Animal Health and Disease Program, Washington, DC.  相似文献   

5.
Summary The lenses of albino rats were studied after freeze-drying with scanning electron microscopic technique.The multilamellated lens capsule is covered by adhering fibers in the equatorial region but looks otherwise almost smooth. The cuboidal, polyhedronal cells on the anterior surface of the lens are characterized by their complex interdigitations and their paucity of extracellular space. The cortical polyhedronal, mostly hexagonal lens fibers have several processes interconnecting neighbouring cells. The plasma membrane appears slightly undulated. It is covered by extracellular material. There is a well-delimited extracellular space between the lens fibers in the cortical layer. The results are discussed in relation to previous studies based upon light and electron microscopy.Supported by grants from the Swedish Medical Research Council (B70-12X-2543-02) and Magn. Bergwalls Stiftelse.  相似文献   

6.
Culture of human endometrial cells under polarizing conditions   总被引:3,自引:0,他引:3  
Glandular epithelial and stromal cells were isolated from human endometrial biopsies and cultured in a dual-chambered system (Millicell; Millipore, Bedford, Ma., USA) that provides access of the medium to both sides of a membrane coated with reconstituted basement membrane material (Matrigel; Collaborative Research Inc., Bedford, Ma., USA). Examination by electron microscopy revealed that the epithelial cells formed a polarized cuboidal-columnar monolayer on the Matrigel surface. The cells exhibited apical microvilli, basal nuclei, and numerous cytoplasmic structures consistent with a well-differentiated cytoplasm; they were joined basally by interdigitating processes and apically by tight junctions and desmosomes. In contrast, epithelial cells cultured in parallel on plastic dishes were flattened, had fewer microvilli and cytoplasmic structures, and no junctional complexes.  相似文献   

7.
The mesenchymal cells of the developing tooth differentiate into odontoblasts as a result of an epithelio-mesenchymal interaction. Odontoblast differentiation was studied in vitro by cultivating dental mesenchyme and epithelium with interposed filters. Separation of the two components by enzyme treatment resulted in removal of the basement membrane. When the epithelium was grown alone, or transfilter from killed lens capsule, the basement membrane was not restored. Transfilter cultivation with dental mesenchyme resulted in basement membrane formation, but only if the filter pores allowed penetration of cytoplasmic processes. Hence, a close association between the epithelial and the mesenchymal cells seems to be a prerequisite for the restoration of the basement membrane. Differentiation of odontoblasts took place only in explants in which a basement membrane was formed. Differentiation did not occur when contact of the mesenchymal cells with the basement membrane was prevented by small pore size filters. Further experiments demonstrating an intact basement membrane suggested that membrane contacts between the epithelial and the mesenchymal cells are not needed for odontoblast differentiation. Hence, we suggest that differentiation of odontoblasts is triggered via contact of the mesenchymal cells with the basement membrane.  相似文献   

8.
Proteins in basement membrane (BM) are long‐lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial‐to‐mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age‐dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC‐MS/MS. The TGFβ2‐mediated upregulation of the mRNA levels (by qPCR) of EMT‐associated proteins was significantly enhanced in cells cultured on AGE‐modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2‐mediated α‐smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2‐mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes‐associated fibrosis.  相似文献   

9.
The morphological and cellular changes that occur with differentiation and development of a lentoid structure from cultured mouse lens epithelial cells have been found to be dependent on the presence of lens capsule in association with the cells. The development of the 'lentoid body' is a multiphase process involving cell replication, synthesis of mucosubstances and a basement collagen membrane, cell aggregation and differentiation. Stage-specific synthesis of lens proteins confirms that the genes regulating normal differentiation in vivo are operating in the in vitro system. The hydrated collagen gel studies described in this report demonstrate that the cuboidal morphology and apical-basal polarity of the lens epithelial cells are dependent on their relationship with the lens capsule. Following a replicative phase the cells assume a mesenchyme-like morphology and migrate into the gel. Trypsinized cells freed from the lens capsule replicate but form colonies on the surface of the gel. The implications of these results are discussed with respect to previous observations made on normal lens development and the abnormalities associated with the congenital cataractous embryonic lens.  相似文献   

10.
Summary Myosin and actin were localized by indirect immunofluorescence microscopy using specific antibodies prepared in rabbits against highly purified gizzard myosin and actin. A strong fluorescence staining with both antibodies was observed in rat corneal epithelial cells, anterior lens epithelial cells, rod inner segments, and in rat and frog pigment epithelial cells. The immunohistochemical localization of myosin in corneal epithelial cells was further supported by the electrophoretic and immunological identification of smooth muscle type myosin heavy chain in pure corneal epithelial abrasions. Electron-microscopic observations revealed a clear correlation between staining with actin antibodies and the presence of numerous thin cytoplasmic filaments (50–80 Å in diameter). The functional and biochemical nature of 90–110 Å filaments occurring in corneal and lens epithelial cells, as well as the ultrastructural localization of myosin in ocular nonmuscle cells under study remains obscure.  相似文献   

11.
Rat blastocysts collected around noon on Day 5 of pregnancy were transferred to the uterus of the mouse on Day 3 of pseudopregnancy. Out of 430 rat blastocysts transferred, a total of 37 were recovered as xenogeneic implants from the recipient mice killed 36, 48, 52, 58, 72, 96, and 120 hr after transfer. None of the transferred blastocysts was found surviving in the host uterus beyond 96 hr after transfer. Electron microscopic examination of the recovered implants revealed that rat blastocysts can successfully undergo the stages of ovum implantation in the mouse uterus from the early attachment to the initial phase of the trophoblastic invasion of the endometrium. During the late attachment stage, desmosomes (maculae adhaerentes), intermediate junctions (zonulae adhaerentes), and gap junctions (nexuses) were formed xenogeneically between the foreign trophoblast and the uterine epithelial cells of the host. Trophoblast cells of xenogeneic implants were destroyed shortly after the penetration of the basement membrane of the luminal epithelium of the host endometrium, leading to the degeneration and sloughing off of the transferred embryos.  相似文献   

12.
Summary The culturing of human endometrium in conventional plastic dishes and media is only partially successful, mainly because a growth of a heterogeneous population of cells is achieved. Naturally produced extracellular matrix closely resembles the subepithelial basement membrane and seems to affect both growth and differentiation of cells. These qualities of the extracellular matrix (ECM) were applied for obtaining endometrial epithelial cultures. Endometrial tissue specimens were plated after slicing on ECM-coated dishes and kept for up to 8 d. The growth of a confluent homogeneous tissue composed of polygonal epithelial-like cells was demonstrated. To further characterize these cells, cultures were examined by scanning electron microscopy and transmission electron microscopy. Scanning electron microscopy revealed flattened polygonal cells covered with microvilli, among which ciliated cells were observed. By transmission electron microscopy the cells were seen as a monolayer, with some cells overlapping, closely adherent to the matrix. Microvilli, as well as intracellular vacuoles and glycogen granules were observed. Cell type specific cytoskeletal markers were demonstrated by antibodies to intermediate filament proteins (keratin and epithelial membrane antigen). Taken together, the morphologic and immunohistochemical studies indicate that a selective growth of the epithelial component of endometrial tissue was obtained after plating unprocessed endometrial tissue fragments on ECM-coated culture dishes. This work was supported by PHS grant no. CA 30289 to J.V.  相似文献   

13.
Guinea-pig (intrusive) and mouse (displacement) blastocysts display different cellular mechanisms of implantation. Blastocysts were placed in CMRL-1066 supplemented with either 10 or 20% fetal calf serum, 0.1M L-glutamine and antibiotics and then transferred to dishes previously coated with either Matrigel or type I collagen. After culture for 48 or 72 h, the dishes were processed for transmission electron microscopy. Blastocysts had attached to both extracellular matrices by 48 h. Matrigel elicited minimal trophoblast cell activity. Trophoblast cell projections were oriented parallel to the Matrigel and displayed little invasive activity, but trophoblast cells displayed active interaction with type I collagen. By 72 h, trophoblast cells exhibited slender, anastomosing projections which extended into the collagen matrix. Bundles of microfilaments running parallel with the long axis of the projections were observed. The morphology of type I collagen was altered in the immediate vicinity of the trophoblast projections. The projections interdigitated and desmosomes developed between processes. Projections appeared to meet, fuse and entrap matrix. These results suggest that trophoblast cells do not significantly interact with Matrigel, but penetrate into type I collagen.  相似文献   

14.
We have previously shown that isolated mouse fetal choroid plexus epithelial (CPE) cells penetrate a basement membrane matrix (Matrigel) substratein vitroto form single-layered epithelial vesicles embedded within the matrix. To determine which properties of the matrix are important for inducing or permitting cells to penetrate the substrate and organize into multicellular vesicles we have made quantitative changes to the basement membrane components and growth factors in cell cultures. Matrigel diluted to 33 or 10% with a collagen I gel was not permissive to cell invasion, and CPE cells formed a polarized epithelial monolayer on the substrate surface which had ultrastructural characteristics similar to those of CPE vesicles. Cells in these monolayers proliferated more rapidly than cells in epithelial vesicles. When deliberately embedded within a 33 or 10% Matrigel matrix, CPE cells were able to form vesicles, indicating that a dilute matrix is nonpermissive to cell invasion but promotes epithelial polarization and organization into vesicles. Cells embedded within a 100% collagen I matrix did not proliferate or form epithelial vesicles and the majority of cells did not remain viable. Addition of laminin to the collagen I gel promoted cell adhesion and cell survival, but did not promote the formation of extensive monolayers on the substrate nor the formation of epithelial vesicles within the matrix. Cell invasion into the 33% Matrigel matrix was induced by addition of laminin, nidogen, or a laminin–nidogen complex to the substrate or by addition of TGFβ2 to the culture medium, but not TGFβ1 or PDGF. These studies show that CPE cells are sensitive to quantitative changes in matrix composition, which influences their survival and proliferation and also their ability to penetrate the matrix and organize into multicellular epithelial vesicles.  相似文献   

15.
To investigate potential heterogeneity and developmental changes in basement membranes during embryogenesis, we performed immunohistochemical analyses on lens capsules in chicken embryos of different ages using domain-specific monoclonal antibodies against type IV collagen. We found that the capsule of the newly formed lens stained uniformly with antibodies against this component of basement membranes, but with increasing age and differentiation of the lens cells the anterior lens capsule remained brightly fluorescent while staining of the posterior capsule became relatively much less intense. This antero- posterior gradient of anti-type IV collagen antibody reactivity demonstrated that developmentally-regulated changes can occur within a single, continuous basement membrane.  相似文献   

16.
We examined the effects of co-culture with oviductal epithelial cells, cumulus cells, trophoblastic vesicles or amniotic sac cells on the development of bovine eight-cell embryos derived from in vitro maturation and fertilization into blastocysts. Frozen-thawed spermatozoa were treated with caffeine plus Ca-ionophore A23187 for capacitation and were then co-incubated for 4 h with oocytes matured in vitro. Ova resulting from this in vitro fertilization were cultured in HEPES-buffered TCM-199 + 10% fetal calf serum(FCS) for 68 h and then removed from the cumulus cell mass. The eight-cell embryos were cultured using four co-culture systems either without cells(controls) or within rabbit oviducts. The co-culture of oviductal epithelial cells, trophoblastic vesicles or amniotic sac cells significantly (P<0.05) increased development into blastocysts (39.0 to 50.7%) when compared with co-culture with cumulus cells, control or rabbit oviducts(1.9 to 29.3%). Six of 16 recipients became pregnant with frozen embryos derived from co-culture with oviductal epithelial cells(1/2), trophoblastic vesicles(2/7) or amniotic sac cells(3/7). Eight calves, including two sets of twins, were obtained.  相似文献   

17.
How tissues and organs develop and maintain their characteristic three-dimensional cellular architecture is often a poorly understood part of their developmental program; yet, as is clearly the case for the eye lens, precise regulation of these features can be critical for function. During lens morphogenesis cells become organized into a polarized, spheroidal structure with a monolayer of epithelial cells overlying the apical tips of elongated fiber cells. Epithelial cells proliferate and progeny that shift below the lens equator differentiate into new fibers that are progressively added to the fiber mass. It is now known that FGF induces epithelial to fiber differentiation; however, it is not fully understood how these two forms of cells assemble into their characteristic polarized arrangement. Here we show that in FGF-treated epithelial explants, elongating fibers become polarized/oriented towards islands of epithelial cells and mimic their polarized arrangement in vivo. Epithelial explants secrete Wnt5 into the culture medium and we show that Wnt5 can promote directed behavior of lens cells. We also show that these explants replicate aspects of the Notch/Jagged signaling activity that has been shown to regulate proliferation of epithelial cells in vivo. Thus, our in vitro study identifies a novel mechanism, intrinsic to the two forms of lens cells, that facilitates self-assembly into the polarized arrangement characteristic of the lens in vivo. In this way the lens, with its relatively simple cellular composition, serves as a useful model to highlight the importance of such intrinsic self-assembly mechanisms in tissue developmental and regenerative processes.  相似文献   

18.
This paper quantitatively defines the nanoscale topography of the basement membrane underlying the anterior corneal epithelium of the macaque. Excised corneal buttons from macaques were placed in 2.5 mM ethylenediaminetetraacetate (EDTA) for 2.5 h, after which the epithelium was carefully removed to expose the underlying basement membrane. The integrity of the remaining basement membrane was verified using fluorescent microscopy in conjunction with antibody staining directed against laminin and collagen type IV as well as transmission electron microscopy. Characterization of the surface of the basement membrane was performed using transmission electron microscopy, high-resolution, low-voltage scanning electron microscopy, and atomic force microscopy. Quantitative data were obtained with all three imaging techniques and compared. The basement membrane has a complex topography consisting of tightly cross-linked fibers intermingled with pores. The mean elevation of features measured by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy was 149 +/- 60 nm, 191 +/- 72 nm, and 147 +/- 73 nm, respectively. Mean fiber diameter as measured by SEM was 77 +/- 44 nm and pore diameter was 72 +/- 40 nm, with pores occupying approximately 15% of the total surface area. Similar feature types and dimensions were also found for Matrigel, a commercially available basement membrane-like complex, supporting that a minimum of artifact was introduced by corneal preparative procedures to remove the overlying epithelium. Topographic features amplified the surface area over which cell-substratum interactions occur by an estimated 400%. The three-dimensional structure of the basement membrane exhibits a rich complex topography of individual features, consisting of pores and fibers with dimensions ranging from 30 to 400 nm. These nanoscale substratum features may modulate fundamental cell behaviors such as adhesion, migration, proliferation, and differentiation.  相似文献   

19.
Tritrichomonas foetus, a world-wide distributed parasitic protozoan is a cause of infertility and abortion. There is no documented information on the susceptibility of bovine embryos to the parasite. To determine the effect of T. foetus on fertilization and embryonic development of preimplantation bovine embryos, we added approximately 10(4)/ml or 10(6)/ml T. foetus (Belfast strain) to sperm cells and oocytes prior to in vitro fertilization (IVF) or to presumptive zygotes 24 h post-fertilization. Light and scanning electron microscopy (SEM) revealed that exposure of oocytes or embryos at any stage of development to T. foetus caused rapid adhesion of the trichomonads to the embryonic intact zona pellucida (ZP) and to trophoblastic cells of hatched blastocysts. Treatment of contaminated embryos with 0.25% trypsin for 3 min did not render them free from T. foetus. Motile parasites were not observed after 18 h incubation in IVF medium, or after 72 h in synthetic oviductal fluid (SOF) embryo culture medium. The percentages of cleaved zygotes, blastocysts and hatched embryos resulting from culture of experimental and uninfected control groups of embryos were not different (P > 0.05). Tritrichomonas foetus was not detected in embryonic cells of ZP-intact or hatched embryos when examined by transmission electron microscopy (TEM). In conclusion, T. foetus has no detrimental effect on the fertilization and development of IVF embryos and the potential risk of transmission of trichomonosis is unlikely, due to the limited survival of the parasite in IVF culture conditions.  相似文献   

20.
Although cholecystokinin is a regulatory peptide with a predominant role in the brain and the gastrointestinal tract, there is an increasing evidence for its role in the kidney. The aim of this study was to reveal morphological changes in the structure of kidney of mice with cholecystokinin overexpression by means of light, transmission and scanning electron microscope, and atomic force microscopy. Using immunohistochemistry the expression of important basement membrane proteins collagen IV, laminin and fibronectin, as well the distribution of cholecystokinin-8 in the renal structures was evaluated. The altered morphology of kidneys of mice with cholecystokinin overexpression was seen by all microscopic techniques used. The renal corpuscles were relatively small with narrow capsular lumen. The basement membranes of renal tubules were thickened and the epithelial cells were damaged, which was more pronounced for distal tubules. Characteristic feature was the increased number of vesicles seen throughout the epithelial cells of proximal and especially in distal tubules reflecting to the enhanced cellular degeneration. The relative expression of laminin but not collagen IV in the glomerular basement membrane was higher than in the tubular basement membranes. The content of fibronectin, in opposite, was higher in tubular membranes. Cholecystokinin-8 was clearly expressed in the glomeruli, in Bowman’s capsule, in proximal and distal tubules, and in collecting ducts. Ultrastructural studies showed irregularly thickened glomerular basement membranes to which elongated cytopodia of differently shaped podocytes were attached. As foot processes were often fused the number of filtration pores was decreased. In conclusion, cholecystokinin plays important role in renal structural formation and in functioning as different aspects of urine production in mice with cholecystokinin overexpression are affected-the uneven glomerular basement membrane thickening, structural changes in podocytes and in filtration slits affect glomerular filtration, while damaged tubular epithelial cells and changed composition of thickened tubular basement membranes affect reabsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号